Do you want to publish a course? Click here

Study of continuum nuclear structure of 12C via (p,pX) at intermediate energies

269   0   0.0 ( 0 )
 Added by ul
 Publication date 1997
  fields
and research's language is English




Ask ChatGPT about the research

The inclusive 12C(p,p) and exclusive 12C(p,pX) reactions have been studied with a beam energy of 156 MeV and for X = p and alpha. The study focuses on the (p,pX) reaction mechanism and on the structure of 12C just above the particle-emission threshold, 14 < E_x < 28 MeV. Cross sections were simultaneously measured for all three reactions. The exclusive data were analyzed by making multiple-peak fits of the spectra and by Legendre-polynomial fits of the angular correlations. Multiple-peak fits were also made of the inclusive spectra. The resultant cross sections were compared to theoretical calculations. An analysis of the results shows that this region of E_x consists predominantly of resonant excitations, in contradiction to the findings of previous analyses.



rate research

Read More

443 - T. Wakasa , M. Dozono , E. Ihara 2007
We report measurements of the cross section and a complete set of polarization observables for the Gamow--Teller ${}^{12}{rm C}(vec{p},vec{n}){}^{12}{rm N}({rm g.s.},1^+)$ reaction at a bombarding energy of 296 MeV. The data are compared with distorted wave impulse approximation calculations employing transition form factors normalized to reproduce the observed beta-decay $ft$ value. The cross section is significantly under-predicted by the calculations at momentum transfers $q gtrsim $ 0.5 ${rm fm^{-1}}$. The discrepancy is partly resolved by considering the non-locality of the nuclear mean field. However, the calculations still under-predict the cross section at large momentum transfers of $q$ $simeq$ 1.6 ${rm fm^{-1}}$. We also performed calculations employing random phase approximation response functions and found that the observed enhancement can be attributed in part to pionic correlations in nuclei.
In the present work, we report our in depth study of 12C(p,pgamma)12C reaction both experimentally and theoretically with proton beam energy ranging from 8 MeV to 22 MeV. The angular distributions were measured at six different angles. We discuss the gamma angular distributions, total cross sections values for 4.438, 9.64, 12.7 and 15.1 MeV states. We also describe the theoretical interpretation of our measurements using optical model analysis. We also report the branching ratios from our measurements. For the first time, we have measured the the cross section and branching ratio for the 9.64 MeV state.
Nuclear stopping has been investigated in central symmetric nuclear collisions at intermediate energies. Firstly, it is found that the isotropy ratio, Riso, reaches a minimum near the Fermi energy and saturates or slowly increases depending on the mass of the system as the beam energy increases. An approximate scaling based on the size of the system is found above the Fermi energy suggesting the increasing role of in-medium nucleon-nucleon collisions. Secondly, the charge density distributions in velocity space, dZ/dvk and dZ/dv?, reveal a strong memory of the entrance channel and, as such, a sizeable nuclear transparency in the intermediate energy range. Lastly, it is shown that the width of the transverse velocity distribution is proportional to the beam velocity.
166 - A. Watanabe , S. Nakai , Y. Wada 2021
We present a precise measurement of the cross section, proton and $rm ^3He$ analyzing powers, and spin correlation coefficient $C_{y,y}$ for $p$-$rm ^3He$ elastic scattering near 65 MeV, and a comparison with rigorous four-nucleon scattering calculations based on realistic nuclear potentials and a model with $Delta$-isobar excitation. Clear discrepancies are seen in some of the measured observables in the regime around the cross section minimum. Theoretical predictions using scaling relations between the calculated cross section and the $rm ^3 He$ binding energy are not successful in reproducing the data. Large sensitivity to the $NN$ potentials and rather small $Delta$-isobar effects in the calculated cross section are noticed as different features from those in the deuteron-proton elastic scattering. The results obtained above indicate that $p$-$rm ^3He$ scattering at intermediate energies is an excellent tool to explore nuclear interactions not accessible by three-nucleon scattering.
The neutron total cross sections $sigma_{tot}$ of $^{16,18}$O, $^{58,64}$Ni, $^{103}$Rh, and $^{112,124}$Sn have been measured at the Los Alamos Neutron Science Center (LANSCE) from low to intermediate energies (3 $leq E_{lab} leq$ 450 MeV) by leveraging waveform-digitizer technology. The $sigma_{tot}$ relative differences between isotopes are presented, revealing additional information about the isovector components needed for an accurate optical-model description away from stability. Digitizer-enabled $sigma_{tot}$-measurement techniques are discussed and a series of uncertainty-quantified dispersive optical model (DOM) analyses using these new data is presented, validating the use of the DOM for modeling light systems ($^{16,18}$O) and systems with open neutron shells ($^{58,64}$Ni and $^{112,124}$Sn). The valence-nucleon spectroscopic factors extracted for each isotope reaffirm the usefulness of high-energy proton reaction cross sections for characterizing depletion from the mean-field expectation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا