Do you want to publish a course? Click here

Feasibility study of the observation of the neutrino accompanied double beta-decay of Ge-76 to the 0+(1) excited state of Se-76 using segmented germanium detectors

126   0   0.0 ( 0 )
 Added by Luciano Pandola
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

Neutrino accompanied double beta-decay of Ge-76 can populate the ground state and the excited states of Se-76. While the decay to the ground state has been observed with a half-life of 1.74 +0.18 -0.16 10^21 years, decays to the excited states have not yet been observed. Nuclear matrix elements depend on details of the nuclear transitions. A measurement of the half-life of the transition considered here could help to reduce the uncertainties of the calculations of the nuclear matrix element for the neutrinoless double beta decay of Ge-76. This parameter relates the half-life of the process to the effective Majorana neutrino mass. The results of a feasibility study to detect the neutrino accompanied double beta-decay of Ge-76 to the excited states of Se-76 are presented in this paper. Segmented germanium detectors were assumed in this study. Such detectors, enriched in Ge-76 to a level of about 86%, will be deployed in the GERDA experiment located at the INFN Gran Sasso National Laboratory, Italy. It is shown that the decay of Ge-76 to the 1122 keV 0+ level of Se-76 can be observed in GERDA provided that the half-life of the process is in the range favoured by the present calculations which is 7.5 10^21 y to 3.1 10^23 y.



rate research

Read More

The Majorana Demonstrator is a neutrinoless double-beta decay search consisting of a low-background modular array of high-purity germanium detectors, $sim2/3$ of which are enriched to 88% in $^{76}$Ge. The experiment is also searching for double-beta decay of $^{76}$Ge to excited states (e.s.) in $^{76}$Se. $^{76}$Ge can decay into three daughter states of $^{76}$Se, with clear event signatures consisting of a $betabeta$-decay followed by the prompt emission of one or two $gamma$-rays. This results with high probability in multi-detector coincidences. The granularity of the Demonstrator detector array enables powerful discrimination of this event signature from backgrounds. Using 41.9~kg-y of isotopic exposure, the Demonstrator has set world leading limits for each e.s. decay of $^{76}$Ge, with 90% CL lower half-life limits in the range of $(0.75-4.0)times10^{24}$~y. In particular, for the $2 u$ transition to the first $0^+$ e.s. of $^{76}$Se, a lower half-life limit of $7.5times10^{23}$~y at 90% CL was achieved.
The MAJORANA DEMONSTRATOR is searching for double-beta decay of $^{76}$Ge to excited states (E.S.) in $^{76}$Se using a modular array of high purity Germanium detectors. $^{76}$Ge can decay into three E.S.s of $^{76}$Se. The E.S. decays have a clear event signature consisting of a $betabeta$-decay with the prompt emission of one or two $gamma$-rays, resulting in with high probability in a multi-site event. The granularity of the DEMONSTRATOR detector array enables powerful discrimination of this event signature from backgrounds. Using 21.3 kg-y of isotopic exposure, the DEMONSTRATOR has set world leading limits for each E.S. decay, with 90% CL lower half-life limits in the range of $(0.56-2.1)cdot10^{24}$ y. In particular, for the $2 u$ transition to the first $0^+$ E.S. of $^{76}$Se, a lower half-life limit of $0.68cdot10^{24}$ at 90% CL was achieved.
The Majorana Experiment is a next-generation Ge-76 double-beta decay search. It will employ 500 kg of Ge, isotopically enriched to 86% in Ge-76, in the form of 200 detectors in a close-packed array for high granularity. Each crystal will be electronically segmented, with each region fitted with pulse-shape analysis electronics. A half-life sensitivity is predicted of 4.2e27 y or <m_nu> < 0.02-0.07 eV, depending on the nuclear matrix elements used to interpret the data.
The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76-Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76-Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76-Ge neutrinoless double-beta decay Q-value of 2039 keV.
The primary goal of the GERmanium Detector Array (Gerda) experiment at the Laboratori Nazionali del Gran Sasso of INFN is the search for the neutrinoless double beta decay of Ge-76. High-purity germanium detectors made from material enriched in Ge-76 are operated directly immersed in liquid argon, allowing for a substantial reduction of the background with respect to predecessor experiments. The first 5.04 kg yr of data collected in Phase I of the experiment have been analyzed to measure the half-life of the neutrino-accompanied double beta decay of Ge-76. The observed spectrum in the energy range between 600 and 1800 keV is dominated by the double beta decay of Ge-76. The half-life extracted from Gerda data is T(1/2) = (1.84 +0.14 -0.10) 10^{21} yr.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا