The production of omega-mesons in the pp->pp omega reaction has been investigated with the COSY-ANKE spectrometer for excess energies of 60 and 92MeV by detecting the two final protons and reconstructing their missing mass. The large multipion background was subtracted using an event-by-event transformation of the proton momenta between the two energies. Differential distributions and total cross sections were obtained after careful studies of possible systematic uncertainties in the overall ANKE acceptance. The results are compared with the predictions of theoretical models. Combined with data on the phi-meson, a more refined estimate is made of the Okubo-Zweig-Iizuka rule violation in the phi/omega production ratio.
The exclusive production cross sections for $omega$ and $phi$ mesons have been measured in proton-proton reactions at $p_{lab}=3.67$ GeV/c. The observed $phi/omega$ cross section ratio is $(3.8pm0.2^{+1.2}_{-0.9})times 10^{-3}$. After phase space corrections, this ratio is enhanced by about an order of magnitude relative to naive predictions based upon the Okubo-Zweig-Iizuka (OZI) rule, in comparison to an enhancement by a factor $sim 3$ previously observed at higher beam momenta. The modest increase of this enhancement near the production threshold is compared to the much larger increase of the $phi/omega$ ratio observed in specific channels of $bar pp$ annihilation experiments. Furthermore, differential cross section results are also presented which indicate that although the $phi$ meson is predominantly produced from a $^3P_1$ proton-proton entrance channel, other partial waves contribute significantly to the production mechanism at this beam momentum.
The total cross section for omega production in the pp -> pp omega reaction has been measured at five c.m. excess energies from 3.8 to 30 MeV. The energy dependence is easily understood in terms of a strong proton-proton final state interaction combined with a smearing over the width of the state. The ratio of near-threshold phi and omega production is consistent with the predictions of a one-pion-exchange model and the degree of violation of the OZI rule is similar to that found in the pi-p -> n omega/phi reactions.
Using a relativistic effective Lagrangian at the hadronic level, near-threshold $omega$ and $phi$ meson productions in proton proton ($pp$) collisions, $p p to p p omega/phi$, are studied within the distorted wave Born approximation. Both initial and final state $pp$ interactions are included. In addition to total cross section data, both $omega$ and $phi$ angular distribution data are used to constrain further the model parameters. For the $p p to p p omega$ reaction we consider two different possibilities: with and without the inclusion of nucleon resonances. The nucleon resonances are included in a way to be consistent with the $pi^- p to omega n$ reaction. It is shown that the inclusion of nucleon resonances can describe the data better overall than without their inclusion. However, the SATURNE data in the range of excess energies $Q < 31$ MeV are still underestimated by about a factor of two. As for the $p p to p p phi$ reaction it is found that the presently limited available data from DISTO can be reproduced by four sets of values for the vector and tensor $phi NN$ coupling constants. Further measurements of the energy dependence of the total cross section near threshold energies should help to constrain better the $phi NN$ coupling constant.
A systematic study of the production of omega-mesons in proton-proton-collisions was carried out in a kinematically complete experiment at three excess energies(epsilon= 92, 128, 173MeV). Both protons were detected using the large-acceptance COSY-TOF spectrometer at an external beam line at the Cooler Synchrotron COSY at Forschungszentrum Julich. The total cross section, angular distributions of both omega-mesons and protons were measured and presented in various reference frames such as the overall CMS, helicity and Jackson frame. In addition, the orientation of the omega-spin and invariant mass spectra were determined. We observe omega-production to take place dominantly in Ss and Sp final states at epsilon = 92, 128 MeV and, additionally, in Sd at epsilon= 173 MeV. No obvious indication of resonant omega-production via N^*-resonances was found, as proton angular distributions are almost isotropic and invariant mass spectra are compatible with phase space distributions. A dominant role of ^3P_1 and ^1S_0 initial partial waves for omega-production was concluded from the orientation of the decay plane of the omega-meson. Although the Jackson angle distributions in the omega-p-Jackson frame are anisotropic we argue that this is not an indication of a resonance but rather a kinematical effect reflecting the anisotropy of the omega angular distribution. The helicity angle distribution in the omega-p-helicity frame shows an anisotropy which probably reflects effects of the omega angular momenta in the final state; this observable may be, in addition to the orientation of the omega decay plane, the most sensitive one to judge the validity of theoretical descriptions of the production process.
Vector mesons are key probes of the hot and dense state of strongly interacting matter produced in heavy ion collisions. Their dileptonic decay channel is particularly suitable for these studies, since dileptons have negligible final state interactions in hadronic matter. A preliminary measurement of the $phi$ and $omega$ differential cross sections was performed by the ALICE experiment in pp collisions at $sqrt{s}=7$ TeV, through their decay in muon pairs. The $p_{rm T}$ and rapidity regions covered in this analysis are $p_{rm T}>1$ GeV$/c$ and $2.5 < y < 4$.