Do you want to publish a course? Click here

Lifetime of 19Ne*(4.03 MeV)

53   0   0.0 ( 0 )
 Added by Barry Davids
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

The Doppler-shift attenuation method was applied to measure the lifetime of the 4.03 MeV state in 19Ne. Utilizing a 3He-implanted Au foil as a target, the state was populated using the 20Ne(3He,alpha)19Ne reaction in inverse kinematics at a 20Ne beam energy of 34 MeV. De-excitation gamma rays were detected in coincidence with alpha particles. At the 1 sigma level, the lifetime was determined to be 11 +4, -3 fs and at the 95.45% confidence level the lifetime is 11 +8, -7 fs.



rate research

Read More

The 15O(alpha,gamma)19Ne reaction is one of two routes for breakout from the hot CNO cycles into the rp process in accreting neutron stars. Its astrophysical rate depends critically on the decay properties of excited states in 19Ne lying just above the 15O + alpha threshold. We have measured the alpha-decay branching ratios for these states using the p(21Ne,t)19Ne reaction at 43 MeV/u. Combining our measurements with previous determinations of the radiative widths of these states, we conclude that no significant breakout from the hot CNO cycle into the rp process in novae is possible via 15O(alpha,gamma)19Ne, assuming current models accurately represent their temperature and density conditions.
The 15O(alpha,gamma)19Ne reaction plays a role in the ignition of Type I x-ray bursts on accreting neutron stars. The lifetimes of states in 19Ne above the 15O + alpha threshold of 3.53 MeV are important inputs to calculations of the astrophysical reaction rate. These levels in 19Ne were populated in the 3He(20Ne,alpha)19Ne reaction at a 20Ne beam energy of 34 MeV. The lifetimes of six states above the threshold were measured with the Doppler shift attenuation method (DSAM). The present measurements agree with previous determinations of the lifetimes of these states and in some cases are considerably more precise.
264 - X. Fabian , X. Flechard , B. Pons 2018
The electron shakeoff of 19F and 35Cl atoms resulting from the b{eta}+ decay of 19Ne+ and 35Ar+ ions has been investigated using a Paul trap coupled to a time of flight recoil-ion spectrometer. The charge-state distributions of the recoiling daughter nuclei were compared to theoretical calculations based on the sudden approximation and accounting for subsequent Auger processes. The excellent agreement obtained for 35Cl is not reproduced in 19F. The shortcoming is attributed to the inaccuracy of the independent particle model employed to calculate the primary shakeoff probabilities in systems with rather low atomic numbers. This calls for more elaborate calculations, including explicitly the electron-electron correlations.
We report a precise determination of the 19Ne half-life to be $T_{1/2} = 17.262 pm 0.007$ s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current Standard Model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.
Free neutrons have a measured lifetime of 880 s, but disagreement between existing laboratory measurements of ~10 s have persisted over many years. This uncertainty has implications for multiple physics disciplines, including standard-model particle physics and Big-Bang nucleosynthesis. Space-based neutron lifetime measurements have been shown to be feasible using existing data taken at Venus and the Moon, although the uncertainties for these measurements of tens of seconds prevent addressing the current lifetime discrepancy. We investigate the implementation of a dedicated space-based experiment that could provide a competitive and independent lifetime measurement. We considered a variety of scenarios, including measurements made from orbit about the Earth, Moon, and Venus, as well as on the surface of the Moon. For a standard-sized neutron detector, a measurement with three-second statistical precision can be obtained from Venus orbit in less than a day; a one-second statistical precision can be obtained from Venus orbit in less than a week. Similarly precise measurements in Earth orbit and on the lunar surface can be acquired in less than 40 days (three-second precision) and ~300 days (one-second precision). Systematic uncertainties that affect a space-based neutron lifetime measurement are investigated, and the feasibility of developing such an experiment is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا