No Arabic abstract
Isoscaling and its relation to the symmetry energy in the fragmentation of excited residues produced at relativistic energies were studied in two experiments conducted at the GSI laboratory. The INDRA multidetector has been used to detect and identify light particles and fragments with Z <= 5 in collisions of 12C on 112,124Sn at incident energies of 300 and 600 MeV per nucleon. Isoscaling is observed, and the deduced parameters decrease with increasing centrality. Symmetry term coefficients, deduced within the statistical description of isotopic scaling, are near gamma = 25 MeV for peripheral and gamma < 15 MeV for central collisions. In a very recent experiment with the ALADIN spectrometer, the possibility of using secondary beams for reaction studies at relativistic energies has been explored. Beams of 107Sn, 124Sn, 124La, and 197Au were used to investigate the mass and isospin dependence of projectile fragmentation at 600 MeV per nucleon. The decrease of the isoscaling parameters is confirmed and extended over the full fragmentation regime covered in these reactions.
Isotopic effects in the fragmentation of excited target residues following collisions of $^{12}$C on $^{112,124}$Sn at incident energies of 300 and 600 MeV per nucleon were studied with the INDRA 4$pi$ detector. The measured yield ratios for light particles and fragments with atomic number $Z leq$ 5 obey the exponential law of isotopic scaling. The deduced scaling parameters decrease strongly with increasing centrality to values smaller than 50% of those obtained for the peripheral event groups. Symmetry term coefficients, deduced from these data within the statistical description of isotopic scaling, are near $gamma =$ 25 MeV for peripheral and $gamma <$ 15 MeV for central collisions.
Isotope temperatures from double ratios of hydrogen, helium, lithium, beryllium, and carbon isotopic yields, and excited-state temperatures from yield ratios of particle-unstable resonances in 4He, 5Li, and 8Be, were determined for spectator fragmentation, following collisions of 197Au with targets ranging from C to Au at incident energies of 600 and 1000 MeV per nucleon. A deviation of the isotopic from the excited-state temperatures is observed which coincides with the transition from residue formation to multi-fragment production, suggesting a chemical freeze-out prior to thermal freeze-out in bulk disintegrations.
The isoscaling properties of isotopically resolved projectile residues from peripheral collisions of 86Kr (25 MeV/nucleon), 64Ni (25 MeV/nucleon) and 136Xe (20 MeV/nucleon) beams on various target pairs are employed to probe the symmetry energy coefficient of the nuclear binding energy. The present study focuses on heavy projectile fragments produced in peripheral and semiperipheral collisions near the onset of multifragment emission E*/A = 2-3 MeV). For these fragments, the measured average velocities are used to extract excitation energies. The excitation energies, in turn, are used to estimate the temperatures of the fragmenting quasiprojectiles in the framework the Fermi gas model. The isoscaling analysis of the fragment yields provided the isoscaling parameters alpha which, in combination with temperatures and isospin asymmetries provided the symmetry energy coefficient of the nuclear binding energy of the hot fragmenting quasiprojectiles. The extracted values of the symmetry energy coefficient at this excitation energy range (2-3 MeV/nucleon) are lower than the typical liquid-drop model value ~25 MeV corresponding to ground-state nuclei and show a monotonic decrease with increasing excitation energy. This result is of importance in the formation of hot nuclei in heavy-ion reactions and in hot stellar environments such as supernova.
Multi-fragment decays of 129Xe, 197Au, and 238U projectiles in collisions with Be, C, Al, Cu, In, Au, and U targets at energies between E/A = 400 MeV and 1000 MeV have been studied with the ALADIN forward-spectrometer at SIS. By adding an array of 84 Si-CsI(Tl) telescopes the solid-angle coverage of the setup was extended to theta_lab = 16 degree. This permitted the complete detection of fragments from the projectile-spectator source. The dominant feature of the systematic set of data is the Z_bound universality that is obeyed by the fragment multiplicities and correlations. These observables are invariant with respect to the entrance channel if plotted as a function of Z_bound, where Z_bound is the sum of the atomic numbers Z_i of all projectile fragments with Z_i geq 2. No significant dependence on the bombarding energy nor on the target mass is observed. The dependence of the fragment multiplicity on the projectile mass follows a linear scaling law. The reasons for and the limits of the observed universality of spectator fragmentation are explored within the realm of the available data and with model studies. It is found that the universal properties should persist up to much higher bombarding energies than explored in this work and that they are consistent with universal features exhibited by the intranuclear cascade and statistical multifragmentation models. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.-q
Invariant cross sections of intermediate mass fragments in peripheral collisions of Au on Au at incident energies between 40 and 150 AMeV have been measured with the 4-pi multi-detector INDRA. The maximum of the fragment production is located near mid-rapidity at the lower energies and moves gradually towards the projectile and target rapidities as the energy is increased. Schematic calculations within an extended Goldhaber model suggest that the observed cross-section distributions and their evolution with energy are predominantly the result of the clustering requirement for the emerging fragments and of their Coulomb repulsion from the projectile and target residues. The quantitative comparison with transverse energy spectra and fragment charge distributions emphasizes the role of hard scattered nucleons in the fragmentation process.