Do you want to publish a course? Click here

Tensor Ayy and vector Ay analyzing powers in the H(d,d)X and ^{12}C(d,d)X reactons at initial deuteron momenta of 9 GeV/c in the region of baryonic resonances excitation

476   0   0.0 ( 0 )
 Added by Ladygin Vladimir
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

The angular dependence of the tensor Ayy and vector Ay analyzing powers in the inelastic scattering of deuterons with a momentum of 9.0 GeV/c on hydrogen and carbon have been measured. The range of measurements corresponds to the baryonic resonance excitation with masses 2.2--2.6 GeV/c^2. The Ayy data being in good agreement with the previous results demonstrate an approximate $t$ scaling up to -1.5 (GeV/c)^2. The large values of A_y show a significant role of the spin-dependent part of the elementary amplitude of the NN->NN* reaction. The results of the experiment are compared with model predictions of the plane-wave impulse approximation.



rate research

Read More

New data on the tensor analyzing power Ayy of the ^9Be(d,p)X reaction at an initial deuteron momentum of 5 GeV/c and secondary particles (protons and deuterons) detection angle of 178 mr have been obtained at the JINR Synchrophasotron. The proton data obtained are analyzed within the framework of an approach based on the light-front dynamics using Karmanovs relativistic deuteron wave function. Contrary to the calculations with standard non-relativistic deuteron wave functions, we have managed to explain the new data within the framework of our approach without invoking degrees of freedom additional to nucleon ones. The ^9Be(d,d)X data are obtained in the vicinity of the excitation of baryonic resonances with masses up to 1.8 GeV/c^2. The Ayy data are in a good agreement with the previous data obtained at 4.5 and 5.5 GeV/c when they are plotted versus $t$. The results of the experiment are compared with the predictions of the plane wave impulse approximation and omega-meson exchange models.
The use of nuclear transparency effect of pi^{-}-mesons in proton, and deuteron induced interactions with carbon nuclei at 4.2A GeV/c, to get information about the properties of nuclear matter, is presented in this work. Half angle (theta_{1/2}) technique is used to extract information on nuclear transparency effect. The theta_{1/2} divides the multiplicity of charged particles into two equal parts depending on their polar angle in the lab. frame in pp interactions. Particles with angle smaller than (incone particles) and greater than (outcone particles) theta_{1/2} are considered separate. The average values of multiplicity, momentum and transverse momentum of the pi^{-}-mesons are analyzed as a function of a number of identified protons in an event. We observed evidences in the data which could be considered as transparency effect. For quantitative analysis, the results are compared with cascade model. The observed effects are categorized into leading effect transparency and medium effect transparency. The transparency in the latter case could be the reason of collective interactions of grouped nucleons with the incident particles.
The production of D* and D mesons in inelastic scattering of 160 GeV/c muons off a ^6LiD target has been investigated with the COMPASS spectrometer at CERN for 0.003 (GeV/c)^2 < Q^2 < 10 (GeV/c)^2 and 3x10^-5< x_Bj < 0.1. The study is based on 8100 events where a D^0 or anti D^0 is detected subsequently to a D*+ or D*- decay, and on 34000 events, where only a D^0 or anti D^0 is detected. Kinematic distributions of D*, D and K*_2 are given as a function of their energy E, transverse momentum p_T, energy fraction z, and of the virtual photon variables nu, Q^2 and x_Bj. Semi-inclusive differential D* production cross-sections are compared with theoretical predictions for D* production via photon-gluon fusion into open charm. The total observed production cross-section for D*+/- mesons with laboratory energies between 22 and 86 GeV is 1.9 nb. Significant cross-section asymmetries are observed between D*+ and D*- production for nu<40 GeV and z>0.6.
A complete set of analyzing powers for the dd->3Hp reaction at the kinetic beam energy of 200 MeV has been measured in the full angular range in the c.m. frame. The observed signs of the tensor analyzing powers Ayy, Axx, and Axz at forward and backward directions have clearly demonstrated the sensitivity to the ratio of the D- and S-wave components of the triton and deuteron, respectively. The new high-precision data are compared with the prediction of the relativistic multiple-scattering model by using standard wave functions of the three-nucleon bound state and of the deuteron.
107 - W. J. Li , Y. G. Ma , G. Q. Zhang 2019
The neutron yield in $^{12}$C(d,n)$^{13}$N and the proton yield in $^{12}C(d,p)^{13}$C have been measured by deuteron beam from 0.6 MeV to 3 MeV which is delivered from a 4-MeV electro static accelerator bombarding on the thick carbon target. The neutrons are detected at $0degree$, $24degree$, $48degree$ and the protons at $135degree$ in the lab frame. The ratios of the neutron yield to the proton one have been calculated and can be used as an effective probe to pin down the resonances. The resonances are found at 1.4 MeV, 1.7 MeV, 2.5 MeV in $^{12}C(d,p)^{13}$C and at 1.6 MeV, 2.7 MeV in $^{12}$C(d,n)$^{13}$N. This method provides a way to reduce the systematic uncertainty and helps to confirm more resonances in compound nuclei.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا