Do you want to publish a course? Click here

Measurement of the analyzing power of proton-carbon elastic scattering in the CNI region at RHIC

129   0   0.0 ( 0 )
 Added by Osamu Jinnouchi
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

The single transverse spin asymmetry, A_N, of the p-carbon elastic scattering process in the Coulomb Nuclear Interference (CNI) region was measured using an ultra thin carbon target and polarized proton beam in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). In 2004, data were collected to calibrate the p-carbon process at two RHIC energies (24 GeV, 100 GeV). A_N was obtained as a function of momentum transfer -t. The results were fit with theoretical models which allow us to assess the contribution from a hadronic spin flip amplitude.



rate research

Read More

The proton analysing power in $vec{p}p$ elastic scattering has been measured at small angles at COSY-ANKE at 796 MeV and five other beam energies between 1.6 and 2.4 GeV using a polarised proton beam. The asymmetries obtained by detecting the fast proton in the ANKE forward detector or the slow recoil proton in a silicon tracking telescope are completely consistent. Although the analysing power results agree well with the many published data at 796 MeV, and also with the most recent partial wave solution at this energy, the ANKE data at the higher energies lie well above the predictions of this solution at small angles. An updated phase shift analysis that uses the ANKE results together with the World data leads to a much better description of these new measurements.
66 - J. Tojo , I. Alekseev , M. Bai 2002
The analyzing power for proton-carbon elastic scattering in the coulomb-nuclear interference region of momentum transfer, $9.0times10^{-3}<-t<4.1times10^{-2}$ (GeV/$c)^{2}$, was measured with a 21.7 GeV/$c$ polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to non-flip amplitude, $r_5$, was obtained from the analyzing power to be $text{Re} r_5=0.088pm 0.058$ and $text{Im} r_5=-0.161pm 0.226$.
We report the first measurement of the vector analyzing power in inclusive transversely polarized elastic electron-proton scattering at Q^2 = 0.1 (GeV/c)^2 and large scattering angles. This quantity should vanish in the single virtual photon exchange, plane wave impulse approximation for this reaction, and can therefore provide information on double photon exchange amplitudes for electromagnetic interactions with hadronic systems. We find a non-zero value of A=-15.4+/-5.4 ppm. No calculations of this observable for nuclei other than spin 0 have been carried out in these kinematics, and the calculation using the spin orbit interaction from a charged point nucleus of spin 0 cannot describe these data.
The vector analyzing power has been measured for the elastic scattering of neutron-rich 6He from polarized protons at 71 MeV/nucleon making use of a newly constructed solid polarized proton target operated in a low magnetic field and at high temperature. Two approaches based on local one-body potentials were applied to investigate the spin-orbit interaction between a proton and a 6He nucleus. An optical model analysis revealed that the spin-orbit potential for 6He is characterized by a shallow and long-ranged shape compared with the global systematics of stable nuclei. A semimicroscopic analysis with a alpha+n+n cluster folding model suggests that the interaction between a proton and the alpha core is essentially important in describing the p+6He elastic scattering. The data are also compared with fully microscopic analyses using non-local optical potentials based on nucleon-nucleon g-matrices.
Vector analyzing power for the proton-6He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target working at low magnetic field of 0.09 T. The results are found to be incompatible with a t-matrix folding model prediction. Comparisons of the data with g-matrix folding analyses clearly show that the vector analyzing power is sensitive to the nuclear structure model used in the reaction analysis. The alpha-core distribution in 6He is suggested to be a possible key to understand the nuclear structure sensitivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا