Do you want to publish a course? Click here

Azimuthal dependence of collective expansion for symmetric heavy ion collisions

420   0   0.0 ( 0 )
 Added by Mihai Petrovici
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

Detailed studies of the azimuthal dependence of the mean fragment and flow energies in the Au+Au and Xe+CsI systems are reported as a function of incident energy and centrality. Comparisons between data and model calculations show that the flow energy values along different azimuthal directions could be viewed as snapshots of the fireball expansion with different exposure times. For the same number of participating nucleons more transversally elongated participant shapes from the heavier system produce less collective transverse energy. Good agreement with BUU calculations is obtained for a soft nuclear equation of state.



rate research

Read More

107 - Eric Bonnet 2013
We present an analysis of multifragmentation events observed in central Xe+Sn reactions at Fermi energies. Performing a comparison between the predictions of the Stochastic Mean Field (SMF) transport model and experimental data, we investigate the impact of the compression-expansion dynamics on the properties of the final reaction products. We show that the amount of radial collective expansion, which characterizes the dynamical stage of the reaction, influences directly the onset of multifragmentation and the kinematic properties of multifragmentation events. For the same set of events we also undertake a shape analysis in momentum space, looking at the degree of stopping reached in the collision, as proposed in recent experimental studies. We show that full stopping is achieved for the most central collisions at Fermi energies. However, considering the same central event selection as in the experimental data, we observe a similar behavior of the stopping power with the beam energy, which can be associated with a change of the fragmentation mechanism, from statistical to prompt fragment emission.
349 - G. H. Liu , Y. G. Ma , X. Z. Cai 2008
Hard photon emitted from energetic heavy ion collisions is of very interesting since it does not experience the late-stage nuclear interaction, therefore it is useful to explore the early-stage information of matter phase. In this work, we have presented a first calculation of azimuthal asymmetry, characterized by directed transverse flow parameter $F$ and elliptic asymmetry coefficient $v_2$, for proton-neutron bremsstrahlung hard photons in intermediate energy heavy-ion collisions. The positive $F$ and negative $v_2$ of direct photons are illustrated and they seem to be anti-correlated to the corresponding free protons flow.
85 - Yifeng Sun , Che Ming Ko 2018
The azimuthal angle dependence of quark spin polarization in the longitudinal beam direction of non-central relativistic heavy ion collisions is studied in the chiral kinetic approach. Contrary to the prediction from models based on the assumption of thermal equilibrium of spin degrees of freedom that the quark spin polarization always points along the direction of local vorticity field, we find the two can have opposite directions due to the effect from the transversal component of vorticity field, which can lead to a redistribution of axial charges in the produced matter. Our finding is consistent with the azimuthal angle dependence of the longitudinal spin polarization of $Lambda$ hyperons, which is mainly determined by that of the strange quark, recently measured in the experiments by the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC).
Using the large acceptance apparatus FOPI, we study central and semi-central collisions in the reactions (energies in A GeV are given in parentheses): 40Ca+40Ca (0.4, 0.6, 0.8, 1.0, 1.5, 1.93), 58Ni+58Ni (0.15, 0.25, 0.4), 96Ru+96Ru (0.4, 1.0, 1.5), 96Zr+96Zr (0.4, 1.0, 1.5), 129Xe+CsI (0.15, 0.25, 0.4), 197Au+197Au (0.09, 0.12, 0.15, 0.25, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5). The observables include directed and elliptic flow. The data are compared to earlier data where possible and to transport model simulations. A stiff nuclear equation of state is found to be incompatible with the data. Evidence for extra-repulsion of neutrons in compressed asymmetric matter is found.
Azimuthal distributions of $eta$ and $pi^{0}$ mesons emitted at midrapidity in collisions of 1.9 AGeV $^{58}$Ni+$^{58}$Ni and 2 AGeV $^{40}$Ca+$^{nat}$Ca are studied as a function of the number of projectile-like spectator nucleons. The observed anisotropy corresponds to a negative elliptic flow signal for $eta$ mesons, indicating a preferred emission perpendicular to the reaction plane. The effect is smallest in peripheral Ni+Ni collisions. In contrast, for $pi^{0}$ mesons, elliptic flow is observed only in peripheral Ni+Ni collisions, changing from positive to negative sign with increasing pion transverse momentum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا