Do you want to publish a course? Click here

Precision neutron interferometric measurement of the nd coherent neutron scattering length and consequences for models of three-nucleon forces

132   0   0.0 ( 0 )
 Added by Timothy C. Black
 Publication date 2003
  fields
and research's language is English
 Authors T. C. Black




Ask ChatGPT about the research

We have performed the first high precision measurement of the coherent neutron scattering length of deuterium in a pure sample using neutron interferometry. We find b_nd = (6.665 +/- 0.004) fm in agreement with the world average of previous measurements using different techniques, b_nd = (6.6730 +/- 0.0045) fm. We compare the new world average for the nd coherent scattering length b_nd = (6.669 +/- 0.003) fm to calculations of the doublet and quartet scattering lengths from several modern nucleon-nucleon potential models with three-nucleon force (3NF) additions and show that almost all theories are in serious disagreement with experiment. This comparison is a more stringent test of the models than past comparisons with the less precisely-determined nuclear doublet scattering length of a_nd = (0.65 +/- 0.04) fm.

rate research

Read More

We report a 0.08 % measurement of the bound neutron scattering length of $^4$He using neutron interferometry. The result is $b = (3.0982 pm 0.0021 mbox{ [stat]} pm 0.0014 mbox{ [sys]}) mbox{ fm}$. The corresponding free atomic scattering length is $a = (2.4746 pm 0.0017 mbox{ [stat]} pm 0.0011 mbox{ [sys]}) mbox{ fm}$. With this result the world average becomes $b = (3.0993 pm 0.0025)$ fm, a 2 % downward shift and a reduction in uncertainty by more than a factor of six. Our result is in disagreement with a previous neutron interferometric measurement but is in good agreement with earlier measurements using neutron transmission.
We show that chiral symmetry and gauge invariance enforce relations between the short-distance physics that occurs in a number of electroweak and pionic reactions on light nuclei. Within chiral perturbation theory this is manifested via the appearance of the same axial isovector two-body contact term in pi- d -> n n gamma, p-wave pion production in NN collisions, tritium beta decay, pp fusion, nu d scattering, and the hep reaction. Using a Gamow-Teller matrix element obtained from calculations of pp fusion as input we compute the neutron spectrum obtained in pi- d -> n n gamma. With the short-distance physics in this process controlled from p p -> d e+ nu_e the theoretical uncertainty in the nn scattering length extracted from pi- d -> n n gamma is reduced by a factor larger than three, to <~0.05 fm.
We have performed high-precision measurements of the coherent neutron scattering lengths of gas phase molecular hydrogen and deuterium using neutron interferometry. After correcting for molecular binding and multiple scattering from the molecule, we find b_{np} = (-3.7384 +/- 0.0020) fm and b_{nd} = (6.6649 +/- 0.0040) fm. Our results are in agreement with the world average of previous Measurements, b_{np} = (-3.7410 +/- 0.0010) fm and b_{nd} = (6.6727 +/- 0.0045) fm. The new world averages for the n-p and n-d coherent scattering lengths, including our new results, are b_{np} = (-3.7405 +/- 0.0009) fm and b_{nd} = (6.6683 +/- 0.0030) fm. We compare bnd with the calculations of the doublet and quartet scattering lengths of several nucleon-nucleon potential models and show that almost all known calculations are in disagreement with the precisely measured linear combination corresponding to the coherent scattering length. Combining the world data on b_{nd} with the modern high-precision theoretical calculations of the quartet n-d scattering lengths recently summarized by Friar et al., we deduce a new value for the doublet scattering length of ^{2}a_{nd} = [0.645 +/- 0.003(expt) +/- 0.007(theory)] fm. This value is a factor of 4, more precise than the previously accepted value of ^{2}a_{nd} = [0.65 +/- 0.04(expt)] fm. The current state of knowledge of scattering lengths in the related p-d system, ideas for improving by a factor of 5 the accuracy of the b_{np} and b_{nd} measurements using neutron interferometry, and possibilities for further improvement of our knowledge of the coherent neutron scattering lengths of 3H, 3He, and 4He are discussed.
We have performed high precision measurements of the zero-energy neutron scattering amplitudes of gas phase molecular hydrogen, deuterium, and $^{3}$He using neutron interferometry. We find $b_{mathit{np}}=(-3.7384 pm 0.0020)$ fmcite{Schoen03}, $b_{mathit{nd}}=(6.6649 pm 0.0040)$ fmcite{Black03,Schoen03}, and $b_{n^{3}textrm{He}} = (5.8572 pm 0.0072)$ fmcite{Huffman04}. When combined with the previous world data, properly corrected for small multiple scattering, radiative corrections, and local field effects from the theory of neutron optics and combined by the prescriptions of the Particle Data Group, the zero-energy scattering amplitudes are: $b_{mathit{np}}=(-3.7389 pm 0.0010)$ fm, $b_{mathit{nd}}=(6.6683 pm 0.0030)$ fm, and $b_{n^{3}textrm{He}} = (5.853 pm .007)$ fm. The precision of these measurements is now high enough to severely constrain NN few-body models. The n-d and n-$^{3}$He coherent neutron scattering amplitudes are both now in disagreement with the best current theories. The new values can be used as input for precision calculations of few body processes. This precision data is sensitive to small effects such as nuclear three-body forces, charge-symmetry breaking in the strong interaction, and residual electromagnetic effects not yet fully included in current models.
The present paper reports high-accuracy cross-section data for the 2H(n,nnp) reaction in the neutron-proton (np) and neutron-neutron (nn) final-state-interaction (FSI) regions at an incident mean neutron energy of 13.0 MeV. These data were analyzed with rigorous three-nucleon calculations to determine the 1S0 np and nn scattering lengths, a_np and a_nn. Our results are a_nn = -18.7 +/- 0.6 fm and a_np = -23.5 +/- 0.8 fm. Since our value for a_np obtained from neutron-deuteron (nd) breakup agrees with that from free np scattering, we conclude that our investigation of the nn FSI done simultaneously and under identical conditions gives the correct value for a_nn. Our value for a_nn is in agreement with that obtained in pion-deuteron capture measurements but disagrees with values obtained from earlier nd breakup studies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا