No Arabic abstract
A natural gold target was irradiated with the antiproton beam from the Low Energy Antiproton Ring at CERN. Antiprotons of 200 MeV/c momentum were stopped in a thick target, products of their annihilations on Au nuclei were detected using the off-line gamma-ray spectroscopy method. In total, yields for 114 residual nuclei were determined, providing a data set to deduce the complete mass and charge distribution of all products with A > 20 from a fitting procedure. The contribution of evaporation and fission decay modes to the total reaction cross section as well as the mean mass loss were estimated. The fission probability for Au absorbing antiprotons at rest was determined to be equal to (3.8+-0.5)%, in good agreement with an estimation derived using other techniques. The mass-charge yield distribution was compared with the results obtained for proton and pion induced gold fragmentation. On the average, the energy released in pbar annihilation is similar to that introduced by ~ 1 GeV protons. However, compared to proton bombardment products, the yield distribution of antiproton absorption residues in the N-Z plane is clearly distinct. The data for antiprotons exhibit also a substantial influence of odd-even and shell effects.
Multiple emission of intermediate-mass fragments has been studied for the collisions of p, $^4$He and $^{12}$C on Au with the $4pi$ setup FASA. In the case of $^{12}$C(22.4 GeV)+Au and $^4$He(14.6 GeV)+Au collisions, the deviations from a pure thermal break-up are seen in the energy spectra of the emitted fragments: the spectra are harder than calculated and than measured in p-induced collisions. This difference is attributed to a collective flow with the expansion velocity on the surface about 0.1 $c$ (for $^{12}$C+Au collisions).
The fragment separator ACCULINNA in the G. N. Flerov Laboratory of Nuclear Reactions of JINR was used to expose a nuclear track emulsion to a beam of radioactive $^{8}$He nuclei of energy of 60 MeV and enrichment of about 80%. Measurements of decays of $^{8}$He nuclei stopped in the emulsion allow one to evaluate possibilities of $alpha$-spectrometry and to observe a thermal drift of $^{8}$He atoms in matter. Knowledge of the energy and emission angles of $alpha$-particles allows one to derive the energy distribution of $alpha$-decays Q$_{2alpha}$. The presence of a tail of large values Q$_{2alpha}$ is established. The physical reason for the appearance of this tail in the distribution Q$_{2alpha}$ is not clear. Its shape could allow one to verify calculations of spatial structure of nucleon ensembles emerging as $alpha$-pairs of decays via the state $^8$Be$_{2+}$.
The cross sections of 110 radioactive nuclide with mass numbers 22 < A < 198 amu from the interaction of 2.2 GeV/nucleon deuterons from the Nuclotron of the Laboratory of High Energies (LHE), Joint Institute for Nuclear Research (JINR) at Dubna with a 197Au target are investigated using induced activity method. The results including charge and mass distributions are parameterized in terms of 3-parameter equation in order to complete the real isobaric distribution. Using data from charge distribution total mass-yield distribution was obtained. The analysis of the mass-yield distribution allows to suppose existence of different channels of the interaction such as spallation, deep spallation, fission-like and multifragmentation processes.
The recoil properties of fragments produced by the interaction of 4.4 GeV deuteron with 197Au target have been studied. New experimental data on recoil properties for 90 nuclei, varying from 24Na to 198Au, were obtained. The technique applied was the {thick-target thick-catcher} and induced activity method. The deuteron beam was obtained from the Nuclotron of the Laboratory of High Energies (LHE), Joint Institute for Nuclear Research (JINR), Dubna. The experimental data were analyzed on the basis of the standard two-step vector model formalism. From this analysis we could find evidence to support the existence of several different mechanisms, such as spallation, fission and fragmentation, in the reaction investigated. Fission contributed appreciably to the formation of products in the mass region of 65 < A < 120. The kinematic characteristics of residual nuclei formed in the present deuteron-induced reaction have been compared to those from proton-induced reactions with gold target.
The independent cross section ratio for production of nuclei from 197Au targets irradiated with 4 GeV deuterons have been measured by off-line gamma-spectroscopy. On the basis of the measured independent cross section ratio of 198m, gAu the average intrinsic angular momentum of the primary nucleus was estimated by means of a simple statistical-model analysis based on the formalism developed by Huizenga and Vandenbosch.