The $^3$He(e, e$$d)p Reaction in q$omega$-constant Kinematics


Abstract in English

The cross section for the $^3$He(e, e$$d)p reaction has been measured as a function of the missing momentum $p_m$ in q$omega$ -constant kinematics at beam energies of 370 and 576 MeV for values of the three-momentum transfer $q$ of 412, 504 and 604 mevc. The L(+TT), T and LT structure functions have been separated for $q$ = 412 and 504 mevc. The data are compared to three-body Faddeev calculations, including meson-exchange currents (MEC), and to calculations based on a covariant diagrammatic expansion. The influence of final-state interactions and meson-exchange currents is discussed. The $p_m$-dependence of the data is reasonably well described by all calculations. However, the most advanced Faddeev calculations, which employ the AV18 nucleon-nucleon interaction and include MEC, overestimate the measured cross sections, especially the longitudinal part, and at the larger values of $q$. The diagrammatic approach gives a fair description of the cross section, but under(over)estimates the longitudinal (transverse) structure function.

Download