We have measured invariant mass spectra of electron-positron pairs in the target rapidity region of 12GeV p+A reactions. We have observed a significant difference in the mass spectra below the $omega$ meson between p+C and p+Cu interactions. The difference is interpreted as a signature of the $rho/omega$ modification at normal nuclear-matter density.
The photo production of $omega$ mesons on the nuclei C, Ca, Nb and Pb has been measured using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the $omega$ meson cross section on the nuclear mass number has been compared with three different types of models, a Glauber analysis, a BUU analysis of the Giessen theory group and a calculation by the Valencia theory group. In all three cases, the inelastic $omega$ width is found to be $130-150 rm{MeV/c^2}$ at normal nuclear matter density for an average 3-momentum of 1.1 GeV/c. In the restframe of the $omega$ meson, this inelastic $omega$ width corresponds to a reduction of the $omega$ lifetime by a factor $approx 30$. For the first time, the momentum dependent $omega$N cross section has been extracted from the experiment and is in the range of 70 mb.
Invariant mass spectra of e+e- pairs have been measured in 12 GeV p+A reactions to detect possible in-medium modification of vector mesons. Copper and carbon targets are used to study the nuclear-size dependence of e+e- invariant mass distributions. A significant excess on the low-mass side of the phi meson peak is observed in the low beta gamma (=beta/sqrt(1-beta^2)) region of phi mesons (beta gamma < 1.25) with copper targets. However, in the high beta gamma region (beta gamma > 1.25), spectral shapes of phi mesons are well described by the Breit-Wigner shape when experimental effects are considered. Thus, in addition to our earlier publication on rho / omega modification, this study has experimentally verified vector meson mass modification at normal nuclear density.
Measurements of the density dependence of the free symmetry energy in low density clustered matter have been extended using the NIMROD multi-detector at Texas A&M University. Thermal coalescence models were employed to extract densities, $rho$, and temperatures, $T$, for evolving systems formed in collisions of 47 $A$ MeV $^{40}$Ar + $^{112}$Sn,$^{124}$Sn and $^{64}$Zn + $^{112}$Sn, $^{124}$Sn. Densities of $0.03 leq rho/rho_0 leq 0.2$ and temperatures in the range 5 to 10 MeV have been sampled. The free symmetry energy coefficients are found to be in good agreement with values calculated using a quantum statistical model. Values of the corresponding symmetry energy coefficient are derived from the data using entropies derived from the model.
Heavy-flavor quarks are dominantly produced in initial hard scattering processes and experience the whole evolution of the system in heavy-ion collisions at RHIC energies. Thus they are suggested to be an excellent probe to the medium properties through their interaction with the medium. In this proceedings, we report our first measurement of $D^0$ production via topological reconstruction using STARs recently installed Heavy Flavor Tracker (HFT). We also report our new measurement of Nuclear Modification Factor ($R_{AA}$) of $D^0$ mesons in central Au+Au collisions at $sqrt{s_{NN}}$ = 200 GeV as a function of transverse momentum ($p_{T}$). New results confirm the strong suppression at high $p_{T}$ with a much improved precision, and show that the $R_{AA}$ at high $p_{T}$ are comparable with light hadrons ($pi$) and with D meson measurements at the LHC. Furthermore, several theoretical calculations are compared to our data, and with charm diffusion coefficient 2${pi}TD_{S}$ $sim$ 2-12 can reproduce both the $D^0$ $R_{AA}$ and $v_2$ data in Au+Au collisions at RHIC.
The STAR Ultra Peripheral Collisions program has collected a substantial sample of $rho$ mesons and for the first time at RHIC energies it has been able to extract the distribution of momentum transfer t from diffractive elastic scattering off the Au ion. The resulting diffraction pattern is consistent with coherent scattering off a nuclear object the size of the Au nuclei. Measurements of this nature can offer insights and guidance to the ongoing preparations for the new electron ion programs.