Colloquium: Theory of Drag Reduction by Polymers in Wall Bounded Turbulence


Abstract in English

The flow of fluids in channels, pipes or ducts, as in any other wall-bounded flow (like water along the hulls of ships or air on airplanes) is hindered by a drag, which increases many-folds when the fluid flow turns from laminar to turbulent. A major technological problem is how to reduce this drag in order to minimize the expense of transporting fluids like oil in pipelines, or to move ships in the ocean. It was discovered in the mid-twentieth century that minute concentrations of polymers can reduce the drag in turbulent flows by up to 80%. While experimental knowledge had accumulated over the years, the fundamental theory of drag reduction by polymers remained elusive for a long time, with arguments raging whether this is a skin or a bulk effect. In this colloquium review we first summarize the phenomenology of drag reduction by polymers, stressing both its universal and non-universal aspects, and then proceed to review a recent theory that provides a quantitative explanation of all the known phenomenology. We treat both flexible and rod-like polymers, explaining the existence of universal properties like the Maximum Drag Reduction (MDR) asymptote, as well as non-universal cross-over phenomena that depend on the Reynolds number, on the nature of the polymer and on its concentration. Finally we also discuss other agents for drag reduction with a stress on the important example of bubbles.

Download