Do you want to publish a course? Click here

Colloquium: Theory of Drag Reduction by Polymers in Wall Bounded Turbulence

88   0   0.0 ( 0 )
 Added by Victor S. L'vov
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The flow of fluids in channels, pipes or ducts, as in any other wall-bounded flow (like water along the hulls of ships or air on airplanes) is hindered by a drag, which increases many-folds when the fluid flow turns from laminar to turbulent. A major technological problem is how to reduce this drag in order to minimize the expense of transporting fluids like oil in pipelines, or to move ships in the ocean. It was discovered in the mid-twentieth century that minute concentrations of polymers can reduce the drag in turbulent flows by up to 80%. While experimental knowledge had accumulated over the years, the fundamental theory of drag reduction by polymers remained elusive for a long time, with arguments raging whether this is a skin or a bulk effect. In this colloquium review we first summarize the phenomenology of drag reduction by polymers, stressing both its universal and non-universal aspects, and then proceed to review a recent theory that provides a quantitative explanation of all the known phenomenology. We treat both flexible and rod-like polymers, explaining the existence of universal properties like the Maximum Drag Reduction (MDR) asymptote, as well as non-universal cross-over phenomena that depend on the Reynolds number, on the nature of the polymer and on its concentration. Finally we also discuss other agents for drag reduction with a stress on the important example of bubbles.



rate research

Read More

We address the Additive Equivalence discovered by Virk and coworkers: drag reduction affected by flexible and rigid rodlike polymers added to turbulent wall-bounded flows is limited from above by a very similar Maximum Drag Reduction (MDR) asymptote. Considering the equations of motion of rodlike polymers in wall-bounded turbulent ensembles, we show that although the microscopic mechanism of attaining the MDR is very different, the macroscopic theory is isomorphic, rationalizing the interesting experimental observations.
We address the phenomenon of drag reduction by dilute polymeric additive to turbulent flows, using Direct Numerical Simulations (DNS) of the FENE-P model of viscoelastic flows. It had been amply demonstrated that these model equations reproduce the phenomenon, but the results of DNS were not analyzed so far with the goal of interpreting the phenomenon. In order to construct a useful framework for the understanding of drag reduction we initiate in this paper an investigation of the most important modes that are sustained in the viscoelastic and Newtonian turbulent flows respectively. The modes are obtained empirically using the Karhunen-Loeve decomposition, allowing us to compare the most energetic modes in the viscoelastic and Newtonian flows. The main finding of the present study is that the spatial profile of the most energetic modes is hardly changed between the two flows. What changes is the energy associated with these modes, and their relative ordering in the decreasing order from the most energetic to the least. Modes that are highly excited in one flow can be strongly suppressed in the other, and vice versa. This dramatic energy redistribution is an important clue to the mechanism of drag reduction as is proposed in this paper. In particular there is an enhancement of the energy containing modes in the viscoelastic flow compared to the Newtonian one; drag reduction is seen in the energy containing modes rather than the dissipative modes as proposed in some previous theories.
Numerical simulations of turbulent channel flows, with or without additives, are limited in the extent of the Reynolds number Re and Deborah number De. The comparison of such simulations to theories of drag reduction, which are usually derived for asymptotically high Re and De, calls for some care. In this paper we present a study of drag reduction by rodlike polymers in a turbulent channel flow using direct numerical simulation and illustrate how these numerical results should be related to the recently developed theory.
98 - E. Leveque , F. Toschi , L. Shao 2006
A shear-improved Smagorinsky model is introduced based on recent results concerning shear effects in wall-bounded turbulence by Toschi et al. (2000). The Smagorinsky eddy-viscosity is modified subtracting the magnitude of the mean shear from the magnitude of the instantaneous resolved strain-rate tensor. This subgrid-scale model is tested in large-eddy simulations of plane-channel flows at two different Reynolds numbers. First comparisons with the dynamic Smagorinsky model and direct numerical simulations, including mean velocity, turbulent kinetic energy and Reynolds stress profiles, are shown to be extremely satisfactory. The proposed model, in addition of being physically sound, has a low computational cost and possesses a high potentiality of generalization to more complex non-homogeneous turbulent flows.
The turbulent energy cascade in dilute polymers solution is addressed here by considering a direct numerical simulation of homogeneous isotropic turbulence of a FENE-P fluid in a triply periodic box. On the basis of the DNS data, a scale by scale analysis is provided by using the proper extension to visco-elastic fluids of the Karman-Howarth equation for the velocity. For the microstructure, an equation, analogous to the Yaglom equation for scalars, is proposed for the free-energy density associated to the elastic behavior of the material. Two mechanisms of energy removal from the scale of the forcing are identified, namely the classical non-linear transfer term of the standard Navier-Stokes equations and the coupling between macroscopic velocity and microstructure. The latter, on average, drains kinetic energy to feed the dynamics of the microstructure. The cross-over scale between the two corresponding energy fluxes is identified, with the flux associated with the microstructure dominating at small separations to become sub-leading above the cross-over scale, which is the equivalent of the elastic limit scale defined by De Gennes-Tabor on the basis of phenomenological assumptions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا