Do you want to publish a course? Click here

On the transient and steady state of mass-conserved reaction diffusion systems

139   0   0.0 ( 0 )
 Added by Shuji Ishihara
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Reaction diffusion systems with Turing instability and mass conservation are studied. In such systems, abrupt decays of stripes follow quasi-stationary states in sequence. At steady state, the distance between stripes is much longer than that estimated by linear stability analysis at a homogeneous state given by alternative stability conditions. We show that there exist systems in which a one-stripe pattern is solely steady state for an arbitrary size of the systems. The applicability to cell biology is discussed.



rate research

Read More

The existence and stability of localized patterns of criminal activity are studied for the reaction-diffusion model of urban crime that was introduced by Short et. al. [Math. Models. Meth. Appl. Sci., 18, Suppl. (2008), pp. 1249--1267]. Such patterns, characterized by the concentration of criminal activity in localized spatial regions, are referred to as hot-spot patterns and they occur in a parameter regime far from the Turing point associated with the bifurcation of spatially uniform solutions. Singular perturbation techniques are used to construct steady-state hot-spot patterns in one and two-dimensional spatial domains, and new types of nonlocal eigenvalue problems are derived that determine the stability of these hot-spot patterns to ${mathcal O}(1)$ time-scale instabilities. From an analysis of these nonlocal eigenvalue problems, a critical threshold $K_c$ is determined such that a pattern consisting of $K$ hot-spots is unstable to a competition instability if $K>K_c$. This instability, due to a positive real eigenvalue, triggers the collapse of some of the hot-spots in the pattern. Furthermore, in contrast to the well-known stability results for spike patterns of the Gierer-Meinhardt reaction-diffusion model, it is shown for the crime model that there is only a relatively narrow parameter range where oscillatory instabilities in the hot-spot amplitudes occur. Such an instability, due to a Hopf bifurcation, is studied explicitly for a single hot-spot in the shadow system limit, for which the diffusivity of criminals is asymptotically large. Finally, the parameter regime where localized hot-spots occur is compared with the parameter regime, studied in previous works, where Turing instabilities from a spatially uniform steady-state occur.
Realistic examples of reaction-diffusion phenomena governing spatial and spatiotemporal pattern formation are rarely isolated systems, either chemically or thermodynamically. However, even formulations of `open reaction-diffusion systems often neglect the role of domain boundaries. Most idealizations of closed reaction-diffusion systems employ no-flux boundary conditions, and often patterns will form up to, or along, these boundaries. Motivated by boundaries of patterning fields related to the emergence of spatial form in embryonic development, we propose a set of mixed boundary conditions for a two-species reaction-diffusion system which forms inhomogeneous solutions away from the boundary of the domain for a variety of different reaction kinetics, with a prescribed uniform state near the boundary. We show that these boundary conditions can be derived from a larger heterogeneous field, indicating that these conditions can arise naturally if cell signalling or other properties of the medium vary in space. We explain the basic mechanisms behind this pattern localization, and demonstrate that it can capture a large range of localized patterning in one, two, and three dimensions, and that this framework can be applied to systems involving more than two species. Furthermore, the boundary conditions proposed lead to more symmetrical patterns on the interior of the domain, and plausibly capture more realistic boundaries in developmental systems. Finally, we show that these isolated patterns are more robust to fluctuations in initial conditions, and that they allow intriguing possibilities of pattern selection via geometry, distinct from known selection mechanisms.
Experimental studies of protein-pattern formation have stimulated new interest in the dynamics of reaction-diffusion systems. However, a comprehensive theoretical understanding of the dynamics of such highly nonlinear, spatially extended systems is still missing. Here we show how a description in phase space, which has proven invaluable in shaping our intuition about the dynamics of nonlinear ordinary differential equations, can be generalized to mass-conserving reaction-diffusion (McRD) systems. We present a comprehensive analysis of two-component McRD systems, which serve as paradigmatic minimal systems that encapsulate the core principles and concepts of the local equilibria theory introduced in the paper. The key insight underlying this theory is that shifting local (reactive) equilibria -- controlled by the local total density -- give rise to concentration gradients that drive diffusive redistribution of total density. We show how this dynamic interplay can be embedded in the phase plane of the reaction kinetics in terms of simple geometric objects: the reactive nullcline and the diffusive flux-balance subspace. On this phase-space level, physical insight can be gained from geometric criteria and graphical constructions. The effects of nonlinearities on the global dynamics are simply encoded in the curved shape of the reactive nullcline. In particular, we show that the pattern-forming `Turing instability in McRD systems is a mass-redistribution instability, and that the features and bifurcations of patterns can be characterized based on regional dispersion relations, associated to distinct spatial regions (plateaus and interfaces) of the patterns. In an extensive outlook section, we detail concrete approaches to generalize local equilibria theory in several directions, including systems with more than two-components, weakly-broken mass conservation, and active matter systems.
Certain two-component reaction-diffusion systems on a finite interval are known to possess mesa (box-like) steadystate patterns in the singularly perturbed limit of small diffusivity for one of the two solution components. As the diffusivity D of the second component is decreased below some critical value Dc, with Dc = O(1), the existence of a steady-state mesa pattern is lost, triggering the onset of a mesa self-replication event that ultimately leads to the creation of additional mesas. The initiation of this phenomena is studied in detail for a particular scaling limit of the Brusselator model. Near the existence threshold Dc of a single steady-state mesa, it is shown that an internal layer forms in the center of the mesa. The structure of the solution within this internal layer is shown to be governed by a certain core problem, comprised of a single non-autonomous second-order ODE. By analyzing this core problem using rigorous and formal asymptotic methods, and by using the Singular Limit Eigenvalue Problem (SLEP) method to asymptotically calculate small eigenvalues, an analytical verification of the conditions of Nishiura and Ueyema [Physica D, 130, No. 1, (1999), pp. 73-104], believed to be responsible for self-replication, is given. These conditions include: (1) The existence of a saddle-node threshold at which the steady-state mesa pattern disappears; (2) the dimple-shaped eigenfunction at the threshold, believed to be responsible for the initiation of the replication process; and (3) the stability of the mesa pattern above the existence threshold. Finally, we show that the core problem is universal in the sense that it pertains to a class of reaction-diffusion systems, including the Gierer-Meinhardt model with saturation, where mesa self-replication also occurs.
Various molecules exclusively accumulate at the front or back of migrating eukaryotic cells in response to a shallow gradient of extracellular signals. Directional sensing and signal amplification highlight the essential properties in the migrating cells, known as cell polarity. In addition to these, such properties of cell polarity involve unique determination of migrating direction (uniqueness of axis) and localized gradient sensing at the front edge (localization of sensitivity), both of which may be required for smooth migration. Here we provide the mass conservation system based on the reaction-diffusion system with two components, where the mass of the two components is always conserved. Using two models belonging to this mass conservation system, we demonstrate through both numerical simulation and analytical approximations that the spatial pattern with a single peak (uniqueness of axis) can be generally observed and that the existent peak senses a gradient of parameters at the peak position, which guides the movement of the peak. We extended this system with multiple components, and we developed a multiple-component model in which cross-talk between members of the Rho family of small GTPases is involved. This model also exhibits the essential properties of the two models with two components. Thus, the mass conservation system shows properties similar to those of cell polarity, such as uniqueness of axis and localization of sensitivity, in addition to directional sensing and signal amplification.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا