Logarithmic scaling in the near-dissipation range of turbulence


Abstract in English

A logarithmic scaling for structure functions, in the form $S_p sim [ln (r/eta)]^{zeta_p}$, where $eta$ is the Kolmogorov dissipation scale and $zeta_p$ are the scaling exponents, is suggested for the statistical description of the near-dissipation range for which classical power-law scaling does not apply. From experimental data at moderate Reynolds numbers, it is shown that the logarithmic scaling, deduced from general considerations for the near-dissipation range, covers almost the entire range of scales (about two decades) of structure functions, for both velocity and passive scalar fields. This new scaling requires two empirical constants, just as the classical scaling does, and can be considered the basis for extended self-similarity.

Download