Do you want to publish a course? Click here

Antispiral waves are sources in oscillatory reaction-diffusion media

89   0   0.0 ( 0 )
 Added by Ernesto M. Nicola
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spiral and antispiral waves are studied numerically in two examples of oscillatory reaction-diffusion media and analytically in the corresponding complex Ginzburg-Landau equation (CGLE). We argue that both these structures are sources of waves in oscillatory media, which are distinguished only by the sign of the phase velocity of the emitted waves. Using known analytical results in the CGLE, we obtain a criterion for the CGLE coefficients that predicts whether antispirals or spirals will occur in the corresponding reaction-diffusion systems. We apply this criterion to the FitzHugh-Nagumo and Brusselator models by deriving the CGLE near the Hopf bifurcations of the respective equations. Numerical simulations of the full reaction-diffusion equations confirm the validity of our simple criterion near the onset of oscillations. They also reveal that antispirals often occur near the onset and turn into spirals further away from it. The transition from antispirals to spirals is characterized by a divergence in the wavelength. A tentative interpretaion of recent experimental observations of antispiral waves in the Belousov-Zhabotinsky reaction in a microemulsion is given.



rate research

Read More

Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example, where waves originate from a source exhibiting a back-and-forth movement in radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves (``superspiral). Using the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonous growth or decay as well as saturation of these modulations away from the source depending on the perturbation frequency. Our findings allow a consistent interpretation of recent experimental observations concerning superspirals and their decay to spatio-temporal chaos.
We study a heretofore ignored class of spiral patterns for oscillatory media as characterized by the complex Landau-Ginzburg model. These spirals emerge from modulating the growth rate as a function of $r$, thereby turning off the instability. These spirals are uniquely determined by matching to those outer conditions, lifting a degeneracy in the set of steady-state solutions of the original equations. Unlike the well-studied spiral which acts a wave source, has a simple core structure and is insensitive to the details of the boundary on which no-flux conditions are imposed, these new spirals are wave sinks, have non-monotonic wavefront curvature near the core, and can be patterned by the form of the spatial boundary. We predict that these anomalous spirals could be produced in nonlinear optics experiments via spatially modulating the gain of the medium.
We consider a model where a population of diffusively coupled limit-cycle oscillators, described by the complex Ginzburg-Landau equation, interacts nonlocally via an inertial field. For sufficiently high intensity of nonlocal inertial coupling, the system exhibits birhythmicity with two oscillation modes at largely different frequencies. Stability of uniform oscillations in the birhythmic region is analyzed by means of the phase dynamics approximation. Numerical simulations show that, depending on its parameters, the system has irregular intermittent regimes with local bursts of synchronization or desynchronization.
Realistic examples of reaction-diffusion phenomena governing spatial and spatiotemporal pattern formation are rarely isolated systems, either chemically or thermodynamically. However, even formulations of `open reaction-diffusion systems often neglect the role of domain boundaries. Most idealizations of closed reaction-diffusion systems employ no-flux boundary conditions, and often patterns will form up to, or along, these boundaries. Motivated by boundaries of patterning fields related to the emergence of spatial form in embryonic development, we propose a set of mixed boundary conditions for a two-species reaction-diffusion system which forms inhomogeneous solutions away from the boundary of the domain for a variety of different reaction kinetics, with a prescribed uniform state near the boundary. We show that these boundary conditions can be derived from a larger heterogeneous field, indicating that these conditions can arise naturally if cell signalling or other properties of the medium vary in space. We explain the basic mechanisms behind this pattern localization, and demonstrate that it can capture a large range of localized patterning in one, two, and three dimensions, and that this framework can be applied to systems involving more than two species. Furthermore, the boundary conditions proposed lead to more symmetrical patterns on the interior of the domain, and plausibly capture more realistic boundaries in developmental systems. Finally, we show that these isolated patterns are more robust to fluctuations in initial conditions, and that they allow intriguing possibilities of pattern selection via geometry, distinct from known selection mechanisms.
We revisit the problem of pinning a reaction-diffusion front by a defect, in particular by a reaction-free region. Using collective variables for the front and numerical simulations, we compare the behaviors of a bistable and monostable front. A bistable front can be pinned as confirmed by a pinning criterion, the analysis of the time independant problem and simulations. Conversely, a monostable front can never be pinned, it gives rise to a secondary pulse past the defect and we calculate the time this pulse takes to appear. These radically different behaviors of bistable and monostable fronts raise issues for modelers in particular areas of biology, as for example, the study of tumor growth in the presence of different tissues.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا