Do you want to publish a course? Click here

Periodic orbit theory of two coupled Tchebyscheff maps

105   0   0.0 ( 0 )
 Added by Carl Dettmann
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coupled map lattices have been widely used as models in several fields of physics, such as chaotic strings, turbulence, and phase transitions, as well as in other disciplines, such as biology (ecology, evolution) and information processing. This paper investigates properties of periodic orbits in two coupled Tchebyscheff maps. The zeta function cycle expansions are used to compute dynamical averages appearing in Becks theory of chaotic strings. The results show close agreement with direct simulation for most values of the coupling parameter, and yield information about the system complementary to that of direct simulation.



rate research

Read More

129 - J. Kaidel , P. Winkler , M. Brack 2003
We investigate the resonance spectrum of the Henon-Heiles potential up to twice the barrier energy. The quantum spectrum is obtained by the method of complex coordinate rotation. We use periodic orbit theory to approximate the oscillating part of the resonance spectrum semiclassically and Strutinsky smoothing to obtain its smooth part. Although the system in this energy range is almost chaotic, it still contains stable periodic orbits. Using Gutzwillers trace formula, complemented by a uniform approximation for a codimension-two bifurcation scenario, we are able to reproduce the coarse-grained quantum-mechanical density of states very accurately, including only a few stable and unstable orbits.
110 - S. Huang , C. Chandre , T. Uzer 2006
The multiphoton ionization of hydrogen by a strong bichromatic microwave field is a complex process prototypical for atomic control research. Periodic orbit analysis captures this complexity: Through the stability of periodic orbits we can match qualitatively the variation of experimental ionization rates with a control parameter, the relative phase between the two modes of the field. Moreover, an empirical formula reproduces quantum simulations to a high degree of accuracy. This quantitative agreement shows how short periodic orbits organize the dynamics in multiphoton ionization.
We introduce the concepts of perpetual points and periodic perpetual loci in discrete--time systems (maps). The occurrence and analysis of these points/loci are shown and basic examples are considered. We discuss the potential usage and properties of introduced concepts. The comparison of perpetual points and loci in discrete--time and continuous--time systems is presented. Discussed methods can be widely applied in other dynamical systems.
Coupled map lattices (CMLs) are prototypical dynamical systems on networks/graphs. They exhibit complex patterns generated via the interplay of diffusive/Laplacian coupling and nonlinear reactions modelled by a single iterated map at each node; the maps are often taken as unimodal, e.g., logistic or tent maps. In this letter, we propose a class of higher-order coupled dynamical systems involving the hypergraph Laplacian, which we call coupled hypergraph maps (CHMs). By combining linearized (in-)stability analysis of synchronized states, hypergraph spectral theory, and numerical methods, we detect robust regions of chaotic cluster synchronization occurring in parameter space upon varying coupling strength and the main bifurcation parameter of the unimodal map. Furthermore, we find key differences between Laplacian and hypergraph Laplacian coupling and detect various other classes of periodic and quasi-periodic patterns. The results show the high complexity of coupled graph maps and indicate that they might be an excellent universal model class to understand the similarities and differences between dynamics on classical graphs and dynamics on hypergraphs.
Semiclassical sum rules, such as the Gutzwiller trace formula, depend on the properties of periodic, closed, or homoclinic (heteroclinic) orbits. The interferences embedded in such orbit sums are governed by classical action functions and Maslov indices. For chaotic systems, the relative actions of such orbits can be expressed in terms of phase space areas bounded by segments of stable and unstable manifolds, and Moser invariant curves. This also generates direct relations between periodic orbits and homoclinic (heteroclinic) orbit actions. Simpler, explicit approximate expressions following from the exact relations are given with error estimates. They arise from asymptotic scaling of certain bounded phase space areas. The actions of infinite subsets of periodic orbits are determined by their periods and the locations of the limiting homoclinic points on which they accumulate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا