Do you want to publish a course? Click here

Breathers in a system with helicity and dipole interaction

61   0   0.0 ( 0 )
 Added by Archilla Jfr
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent papers that have studied variants of the Peyrard-Bishop model for DNA, have taken into account the long range interaction due to the dipole moments of the hydrogen bonds between base pairs. In these models the helicity of the double strand is not considered. In this particular paper we have performed an analysis of the influence of the helicity on the properties of static and moving breathers in a Klein--Gordon chain with dipole-dipole interaction. It has been found that the helicity enlarges the range of existence and stability of static breathers, although this effect is small for a typical helical structure of DNA. However the effect of the orientation of the dipole moments is considerably higher with transcendental consequences for the existence of mobile breathers.



rate research

Read More

Mutual interaction of localized nonlinear waves, e.g. solitons and modulation instability patterns, is a fascinating and intensively-studied topic of nonlinear science. In this research report, we report on the observation of a novel type of breather interaction in telecommunication optical fibers, in which two identical breathers propagate with opposite group velocities. Under certain conditions, neither amplification nor annihilation occur at the collision point and most interestingly, its amplitude is almost equal to another maximum of either oscillating breather. This ghost-like breather interaction dynamics can be fully described by the N-breather solution of the nonlinear Schrodinger equation.
In this paper, interstitial migration generated by scattering with a mobile breather is investigated numerically in a Frenkel-Kontorova one-dimensional lattice. Consistent with experimental results it is shown that interstitial diffusion is more likely and faster than vacancy diffusion. Our simulations support the hypothesis that a long-range energy transport mechanism involving moving nonlinear vibrational excitations may significantly enhance the mobility of point defects in a crystal lattice.
We study the properties of discrete breathers, also known as intrinsic localized modes, in the one-dimensional Frenkel-Kontorova lattice of oscillators subject to damping and external force. The system is studied in the whole range of values of the coupling parameter, from C=0 (uncoupled limit) up to values close to the continuum limit (forced and damped sine-Gordon model). As this parameter is varied, the existence of different bifurcations is investigated numerically. Using Floquet spectral analysis, we give a complete characterization of the most relevant bifurcations, and we find (spatial) symmetry-breaking bifurcations which are linked to breather mobility, just as it was found in Hamiltonian systems by other authors. In this way moving breathers are shown to exist even at remarkably high levels of discreteness. We study mobile breathers and characterize them in terms of the phonon radiation they emit, which explains successfully the way in which they interact. For instance, it is possible to form ``bound states of moving breathers, through the interaction of their phonon tails. Over all, both stationary and moving breathers are found to be generic localized states over large values of $C$, and they are shown to be robust against low temperature fluctuations.
We consider the long-term weakly nonlinear evolution governed by the two-dimensional nonlinear Schr{o}dinger (NLS) equation with an isotropic harmonic oscillator potential. The dynamics in this regime is dominated by resonant interactions between quartets of linear normal modes, accurately captured by the corresponding resonant Hamiltonian system. In the framework of this system, we identify Fermi-Pasta-Ulam-like recurrence phenomena, whereby the normal-mode spectrum passes in close proximity of the initial configuration, and two-mode states with time-independent mode amplitude spectra that translate into long-lived breathers of the original NLS equation. We comment on possible implications of these findings for nonlinear optics and matter-wave dynamics in Bose-Einstein condensates.
257 - Hua Ke , Zhihui Zhang , 2014
Three-dimensional excitable systems can selforganize vortex patterns that rotate around one-dimensional phase singularities called filaments. In experiments with the Belousov-Zhabotinsky reaction and numerical simulations, we pin these scroll waves to moving heterogeneities and demonstrate the controlled repositioning of their rotation centers. If the pinning site extends only along a portion of the filament, the phase singularity is stretched out along the trajectory of the heterogeneity which effectively writes the singularity into the system. Its trailing end point follows the heterogeneity with a lower velocity. This velocity, its dependence on the placement of the anchor, and the shape of the filament are explained by a curvature flow model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا