Stability of cylindrical and spherical crystals growing from a supersaturated solution (in Mullins-Sekerkas approximation) is considered using the maximum entropy production principle. The concept of the binodal of the nonequilibrium (morphological) phase transition is introduced for interpretation of the obtained results. The limits of the metastable regions are determined. The morphological phase diagrams of stable-unstable growth in the plane (surface energy, supersaturation) are given.