Do you want to publish a course? Click here

A perfect Morse function on the moduli space of flat connections

107   0   0.0 ( 0 )
 Added by Michael Thaddeus
 Publication date 1998
  fields
and research's language is English




Ask ChatGPT about the research

The moduli space of flat SU(2) connections on a punctured surface, having prescribed holonomy around the punctures, is a compact smooth manifold if the prescription is generic. This paper gives a direct, elementary proof that the trace of the holonomy around a certain loop determines a Bott-Morse function on the moduli space which is perfect, meaning that the Morse inequalities are equalities. This leads to an attractive recursion for the Betti numbers of the moduli space, which agrees with the Harder-Narasimhan formula in the case of one puncture with holonomy -1.



rate research

Read More

136 - Daniel A. Ramras 2018
We compute the homotopy type of the moduli space of flat, unitary connections over aspherical surfaces, after stabilizing with respect to the rank of the underlying bundle. Over the orientable surface M^g, we show that this space has the homotopy type of the infinite symmetric product of M^g, generalizing a well-known fact for the torus. Over a non-orientable surface, we show that this space is homotopy equivalent to a disjoint union of two tori, whose common dimension corresponds to the rank of the first (co)homology group of the surface. Similar calculations are provided for products of surfaces, and show a close analogy with the Quillen-Lichtenbaum conjectures in algebraic K-theory. The proofs utilize Tyler Lawsons work in deformation K-theory, and rely heavily on Yang-Mills theory and gauge theory.
111 - Tosiaki Kori 2005
We introduce a symplectic structure on the space of connections in a G-principal bundle over a four-manifold and the Hamiltonian action on it of the group of gauge transformations which are trivial on the boundary. The symplectic reduction becomes the moduli space of flat connections over the manifold. On the moduli space of flat connections we shall construct a hermitian line bundle with connection whose curvature is given by the symplectic form. This is the Chern-Simons prequantum line bundle. The group of gauge transformations on the boundary of the base manifold acts on the moduli space of flat connections by an infinitesimally symplectic way. This action is lifted to the prequantum line bundle by its abelian extension.
153 - Alastair Hamilton 2007
In this paper we show that the homology of a certain natural compactification of the moduli space, introduced by Kontsevich in his study of Wittens conjectures, can be described completely algebraically as the homology of a certain differential graded Lie algebra. This two-parameter family is constructed by using a Lie cobracket on the space of noncommutative 0-forms, a structure which corresponds to pinching simple closed curves on a Riemann surface, to deform the noncommutative symplectic geometry described by Kontsevich in his subsequent papers.
231 - Tosiaki Kori 2013
Let X be a four-manifold with boundary three manifold M. We shall describe (i) a pre-symplectic structure on the space of connections of the trivial SU(n)-bundle over X that comes from the canonical symplectic structure on the cotangent bundle of the connection space, and (ii) a pre-symplectic structure on the space of flat connections of the trivial SU(n)-bundle over M that have null charge. These two structures are related by the boundary restriction map. We discuss also the Hamiltonian feature of the space of connections with the action of the group of gauge transformations.
166 - Andrew Putman 2011
Let $Gamma$ be a finite-index subgroup of the mapping class group of a closed genus $g$ surface that contains the Torelli group. For instance, $Gamma$ can be the level $L$ subgroup or the spin mapping class group. We show that $H_2(Gamma;Q) cong Q$ for $g geq 5$. A corollary of this is that the rational Picard groups of the associated finite covers of the moduli space of curves are equal to $Q$. We also prove analogous results for surface with punctures and boundary components.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا