Do you want to publish a course? Click here

Large time behavior for a viscous Hamilton-Jacobi equation with Neumann boudary condition

61   0   0.0 ( 0 )
 Added by Said Benachour
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We prove the existence and the uniqueness of strong solutions for the viscous Hamilton-Jacobi Equation with Neumann boundary condition and initial data a continious function. Then, we study the large time behavior of the solutions.



rate research

Read More

73 - Said Benachour 2006
Global classical solutions to the viscous Hamilton-Jacobi equation with homogenious Dirichlet boundary conditions are shown to converge to zero at the same speed as the linear heat semigroup when p > 1. For p = 1, an exponential decay to zero is also obtained in one space dimension but the rate depends on a and differs from that of the linear heat equation. Finally, if 0 < p < 1 and a < 0, finite time extinction occurs for non-negative solutions.
208 - Said Benachour 2007
The large time behavior of solutions to Cauchy problem for viscous Hamilton-Jacobi equation is classified. The large time asymptotics are given by very singular self-similar solutions on one hand and by self-similar viscosity solutions on the other hand
In this article we study ergodic problems in the whole space $mathbb{R}^N$ for a weakly coupled systems of viscous Hamilton-Jacobi equations with coercive right-hand sides. The Hamiltonians are assumed to have a fairly general structure and the switching rates need not be constant. We prove the existence of a critical value $lambda^*$ such that the ergodic eigenvalue problem has a solution for every $lambdaleqlambda^*$ and no solution for $lambda>lambda^*$. Moreover, the existence and uniqueness of non-negative solutions corresponding to the value $lambda^*$ are also established. We also exhibit the implication of these results to the ergodic optimal control problems of controlled switching diffusions.
In quantitative genetics, viscosity solutions of Hamilton-Jacobi equations appear naturally in the asymptotic limit of selection-mutation models when the population variance vanishes. They have to be solved together with an unknown function I(t) that arises as the counterpart of a non-negativity constraint on the solution at each time. Although the uniqueness of viscosity solutions is known for many variants of Hamilton-Jacobi equations, the uniqueness for this particular type of constrained problem was not resolved, except in a few particular cases. Here, we provide a general answer to the uniqueness problem, based on three main assumptions: convexity of the Hamiltonian function H(I, x, p) with respect to p, monotonicity of H with respect to I, and BV regularity of I(t).
The well known phenomenon of exponential contraction for solutions to the viscous Hamilton-Jacobi equation in the space-periodic setting is based on the Markov mechanism. However, the corresponding Lyapunov exponent $lambda( u)$ characterizing the exponential rate of contraction depends on the viscosity $ u$. The Markov mechanism provides only a lower bound for $lambda( u)$ which vanishes in the limit $ u to 0$. At the same time, in the inviscid case $ u=0$ one also has exponential contraction based on a completely different dynamical mechanism. This mechanism is based on hyperbolicity of action-minimizing orbits for the related Lagrangian variational problem. In this paper we consider the discrete time case (kicked forcing), and establish a uniform lower bound for $lambda( u)$ which is valid for all $ ugeq 0$. The proof is based on a nontrivial interplay between the dynamical and Markov mechanisms for exponential contraction. We combine PDE methods with the ideas from the Weak KAM theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا