We prove the existence and the uniqueness of strong solutions for the viscous Hamilton-Jacobi Equation with Neumann boundary condition and initial data a continious function. Then, we study the large time behavior of the solutions.
Global classical solutions to the viscous Hamilton-Jacobi equation with homogenious Dirichlet boundary conditions are shown to converge to zero at the same speed as the linear heat semigroup when p > 1. For p = 1, an exponential decay to zero is also obtained in one space dimension but the rate depends on a and differs from that of the linear heat equation. Finally, if 0 < p < 1 and a < 0, finite time extinction occurs for non-negative solutions.
The large time behavior of solutions to Cauchy problem for viscous Hamilton-Jacobi equation is classified. The large time asymptotics are given by very singular self-similar solutions on one hand and by self-similar viscosity solutions on the other hand
In this article we study ergodic problems in the whole space $mathbb{R}^N$ for a weakly coupled systems of viscous Hamilton-Jacobi equations with coercive right-hand sides. The Hamiltonians are assumed to have a fairly general structure and the switching rates need not be constant. We prove the existence of a critical value $lambda^*$ such that the ergodic eigenvalue problem has a solution for every $lambdaleqlambda^*$ and no solution for $lambda>lambda^*$. Moreover, the existence and uniqueness of non-negative solutions corresponding to the value $lambda^*$ are also established. We also exhibit the implication of these results to the ergodic optimal control problems of controlled switching diffusions.
In quantitative genetics, viscosity solutions of Hamilton-Jacobi equations appear naturally in the asymptotic limit of selection-mutation models when the population variance vanishes. They have to be solved together with an unknown function I(t) that arises as the counterpart of a non-negativity constraint on the solution at each time. Although the uniqueness of viscosity solutions is known for many variants of Hamilton-Jacobi equations, the uniqueness for this particular type of constrained problem was not resolved, except in a few particular cases. Here, we provide a general answer to the uniqueness problem, based on three main assumptions: convexity of the Hamiltonian function H(I, x, p) with respect to p, monotonicity of H with respect to I, and BV regularity of I(t).
The well known phenomenon of exponential contraction for solutions to the viscous Hamilton-Jacobi equation in the space-periodic setting is based on the Markov mechanism. However, the corresponding Lyapunov exponent $lambda( u)$ characterizing the exponential rate of contraction depends on the viscosity $ u$. The Markov mechanism provides only a lower bound for $lambda( u)$ which vanishes in the limit $ u to 0$. At the same time, in the inviscid case $ u=0$ one also has exponential contraction based on a completely different dynamical mechanism. This mechanism is based on hyperbolicity of action-minimizing orbits for the related Lagrangian variational problem. In this paper we consider the discrete time case (kicked forcing), and establish a uniform lower bound for $lambda( u)$ which is valid for all $ ugeq 0$. The proof is based on a nontrivial interplay between the dynamical and Markov mechanisms for exponential contraction. We combine PDE methods with the ideas from the Weak KAM theory.