No Arabic abstract
We study cyclotomic association schemes over a finite commutative ring $R$ with identity. The main interest for us is to identify the normal cyclotomic schemes $C$, i.e. those for which $Aut(C)$ is a subgroup of the one-dimensional affine semilinear group over $R$. The problem is reduced to the case when the ring $R$ is local in which a necessary condition of normality in terms of the subgroup of $R^times$ defining $C$, is given. This condition is proved to be sufficient for a class of local rings including the Galois rings of odd characteristic.
It is proved that with finitely many possible exceptions, each cyclotomic scheme over finite field is determined up to isomorphism by the tensor of 2-dimensional intersection numbers; for infinitely many schemes, this result cannot be improved. As a consequence, the Weisfeiler-Leman dimension of a Paley graph or tournament is at most 3 with possible exception of several small graphs.
In this paper we deal with the problem of computing the sum of the $k$-th powers of all the elements of the matrix ring $mathbb{M}_d(R)$ with $d>1$ and $R$ a finite commutative ring. We completely solve the problem in the case $R=mathbb{Z}/nmathbb{Z}$ and give some results that compute the value of this sum if $R$ is an arbitrary finite commutative ring $R$ for many values of $k$ and $d$. Finally, based on computational evidence and using some technical results proved in the paper we conjecture that the sum of the $k$-th powers of all the elements of the matrix ring $mathbb{M}_d(R)$ is always $0$ unless $d=2$, $textrm{card}(R) equiv 2 pmod 4$, $1<kequiv -1,0,1 pmod 6$ and the only element $ein R setminus {0}$ such that $2e =0$ is idempotent, in which case the sum is $textrm{diag}(e,e)$.
We construct twelve infinite families of pseudocyclic and non-amorphic association schemes, in which each nontrivial relation is a strongly regular graph. Three of the twelve families generalize the counterexamples to A. V. Ivanovs conjecture by Ikuta and Munemasa [15].
In the well-known construction of the field of fractions of an integral domain, division by zero is excluded. We introduce fracpairs as pairs subject to laws consistent with the use of the pair as a fraction, but do not exclude denominators to be zero. We investigate fracpairs over a reduced commutative ring (a commutative ring that has no nonzero nilpotent elements) and provide these with natural definitions for addition, multiplication, and additive and multiplicative inverse. We find that modulo a simple congruence these fracpairs constitute a common meadow, which is a commutative monoid both for addition and multiplication, extended with a weak additive inverse, a multiplicative inverse except for zero, and an additional element a that is the image of the multiplicative inverse on zero and that propagates through all operations. Considering a as an error-value supports the intuition. The equivalence classes of fracpairs thus obtained are called common cancellation fractions (cc-fractions), and cc-fractions over the integers constitute a homomorphic pre-image of the common meadow Qa, the field Q of rational numbers expanded with an a-totalized inverse. Moreover, the initial common meadow is isomorphic to the initial algebra of cc-fractions over the integer numbers. Next, we define canonical term algebras for cc-fractions over the integers and some meadows that model the rational numbers expanded with a totalized inverse, and provide some negative results concerning their associated term rewriting properties. Then we consider reduced commutative rings in which the sum of two squares plus one cannot be a zero divisor: by extending the equivalence relation on fracpairs we obtain an initial algebra that is isomorphic to Qa. Finally, we express negative conjectures concerning alternative specifications for these (concrete) datatypes.
Galois images of polycyclic codes over a finite chain ring $S$ and their annihilator dual are investigated. The case when a polycyclic codes is Galois-disjoint over the ring $S,$ is characterized and, the trace codes and restrictions of free polycyclic codes over $S$ are also determined givind an analogue of Delsarte theorem among trace map, any S -linear code and its annihilator dual.