Do you want to publish a course? Click here

Generation type inequalities for closed linear operators related to domains with conical points

59   0   0.0 ( 0 )
 Added by Alberto Favaron
 Publication date 2006
  fields
and research's language is English
 Authors A. Favaron




Ask ChatGPT about the research

Let ${cal A}(x;D_x)$ be a second-order linear differential operator in divergence form. We prove that the operator ${l}I- {cal A}(x;D_x)$, where $lincsp$ and $I$ stands for the identity operator, is closed and injective when ${rm Re}l$ is large enough and the domain of ${cal A}(x;D_x)$ consists of a special class of weighted Sobolev function spaces related to conical open bounded sets of $rsp^n$, $n ge 1$.

rate research

Read More

We study the adjoint of the double layer potential associated with the Laplacian (the adjoint of the Neumann-Poincare operator), as a map on the boundary surface $Gamma$ of a domain in $mathbb{R}^3$ with conical points. The spectrum of this operator directly reflects the well-posedness of related transmission problems across $Gamma$. In particular, if the domain is understood as an inclusion with complex permittivity $epsilon$, embedded in a background medium with unit permittivity, then the polarizability tensor of the domain is well-defined when $(epsilon+1)/(epsilon-1)$ belongs to the resolvent set in energy norm. We study surfaces $Gamma$ that have a finite number of conical points featuring rotational symmetry. On the energy space, we show that the essential spectrum consists of an interval. On $L^2(Gamma)$, i.e. for square-integrable boundary data, we show that the essential spectrum consists of a countable union of curves, outside of which the Fredholm index can be computed as a winding number with respect to the essential spectrum. We provide explicit formulas, depending on the opening angles of the conical points. We reinforce our study with very precise numerical experiments, computing the energy space spectrum and the spectral measures of the polarizability tensor in two different examples. Our results indicate that the densities of the spectral measures may approach zero extremely rapidly in the continuous part of the energy space spectrum.
In this paper, we derive Carleman estimates for the fractional relativistic operator. Firstly, we consider changing-sign solutions to the heat equation for such operators. We prove monotonicity inequalities and convexity of certain energy functionals to deduce Carleman estimates with linear exponential weight. Our approach is based on spectral methods and functional calculus. Secondly, we use pseudo-differential calculus in order to prove Carleman estimates with quadratic exponential weight, both in parabolic and elliptic contexts. The latter also holds in the case of the fractional Laplacian.
123 - Mark Allen , Dennis Kriventsov , 2021
For a domain $Omega subset mathbb{R}^n$ and a small number $frak{T} > 0$, let [ mathcal{E}_0(Omega) = lambda_1(Omega) + {frak{T}} {text{tor}}(Omega) = inf_{u, w in H^1_0(Omega)setminus {0}} frac{int | abla u|^2}{int u^2} + {frak{T}} int frac{1}{2} | abla w|^2 - w ] be a modification of the first Dirichlet eigenvalue of $Omega$. It is well-known that over all $Omega$ with a given volume, the only sets attaining the infimum of $mathcal{E}_0$ are balls $B_R$; this is the Faber-Krahn inequality. The main result of this paper is that, if for all $Omega$ with the same volume and barycenter as $B_R$ and whose boundaries are parametrized as small $C^2$ normal graphs over $partial B_R$ with bounded $C^2$ norm, [ int |u_{Omega} - u_{B_R}|^2 + |Omega triangle B_R|^2 leq C [mathcal{E}_0(Omega) - mathcal{E}_0(B_R)] ] (i.e. the Faber-Krahn inequality is linearly stable), then the same is true for any $Omega$ with the same volume and barycenter as $B_R$ without any smoothness assumptions (i.e. it is nonlinearly stable). Here $u_{Omega}$ stands for an $L^2$-normalized first Dirichlet eigenfunction of $Omega$. Related results are shown for Riemannian manifolds. The proof is based on a detailed analysis of some critical perturbations of Bernoulli-type free boundary problems. The topic of when linear stability is valid, as well as some applications, are considered in a companion paper.
We study the oblique derivative problem for uniformly elliptic equations on cone domains. Under the assumption of axi-symmetry of the solution, we find sufficient conditions on the angle of the oblique vector for Holder regularity of the gradient to hold up to the vertex of the cone. The proof of regularity is based on the application of carefully constructed barrier methods or via perturbative arguments. In the case that such regularity does not hold, we give explicit counterexamples. We also give a counterexample to regularity in the absence of axi-symmetry. Unlike in the equivalent two dimensional problem, the gradient Holder regularity does not hold for all axi-symmetric solutions, but rather the qualitative regularity properties depend on both the opening angle of the cone and the angle of the oblique vector in the boundary condition.
148 - Jingbo Dou , Liming Sun , Lei Wang 2019
In this paper we classify all positive extremal functions to a sharp weighted Sobolev inequality on the upper half space, which involves divergent operators with degeneracy on the boundary. As an application of the results, we can derive a sharp Sobolev type inequality involving Baouendi-Grushin operator, and classify certain extremal functions for all $tau>0$ and $m e2 $ or $ n e1$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا