Do you want to publish a course? Click here

Hierarchical orbital decompositions and extended decomposable distributions

58   0   0.0 ( 0 )
 Added by Akimichi Takemura
 Publication date 2006
and research's language is English




Ask ChatGPT about the research

Elliptically contoured distributions can be considered to be the distributions for which the contours of the density functions are proportional ellipsoids. Kamiya, Takemura and Kuriki (2006) generalized the elliptically contoured distributions to star-shaped distributions, for which the contours are allowed to be arbitrary proportional star-shaped sets. This was achieved by considering the so-called orbital decomposition of the sample space in the general framework of group invariance. In the present paper, we extend their results by conducting the orbital decompositions in steps and obtaining a further, hierarchical decomposition of the sample space. This allows us to construct probability models and distributions with further independence structures. The general results are applied to the star-shaped distributions with a certain symmetric structure, the distributions related to the two-sample Wishart problem and the distributions of preference rankings.



rate research

Read More

In this paper, we explore a connection between binary hierarchical models, their marginal polytopes and codeword polytopes, the convex hulls of linear codes. The class of linear codes that are realizable by hierarchical models is determined. We classify all full dimensional polytopes with the property that their vertices form a linear code and give an algorithm that determines them.
Elliptically contoured distributions can be considered to be the distributions for which the contours of the density functions are proportional ellipsoids. We generalize elliptically contoured densities to ``star-shaped distributions with concentric star-shaped contours and show that many results in the former case continue to hold in the more general case. We develop a general theory in the framework of abstract group invariance so that the results can be applied to other cases as well, especially those involving random matrices.
63 - Thomas Royen 2016
A (p-1)-variate integral representation is given for the cumulative distribution function of the general p-variate non-central gamma distribution with a non-centrality matrix of any admissible rank. The real part of products of well known analytical functions is integrated over arguments from (-pi,pi). To facilitate the computation, these formulas are given more detailed for p=2 and p=3. These (p-1)-variate integrals are also derived for the diagonal of a non-central complex Wishart Matrix. Furthermore, some alternative formulas are given for the cases with an associated one-factorial (pxp)-correlation matrix R, i.e. R differs from a suitable diagonal matrix only by a matrix of rank 1, which holds in particular for all (3x3)-R with no vanishing correlation.
123 - Nilanjana Laha , Zhen Miao , 2020
We introduce new shape-constrained classes of distribution functions on R, the bi-$s^*$-concave classes. In parallel to results of Dumbgen, Kolesnyk, and Wilke (2017) for what they called the class of bi-log-concave distribution functions, we show that every $s$-concave density $f$ has a bi-$s^*$-concave distribution function $F$ for $s^*leq s/(s+1)$. Confidence bands building on existing nonparametric bands, but accounting for the shape constraint of bi-$s^*$-concavity, are also considered. The new bands extend those developed by Dumbgen et al. (2017) for the constraint of bi-log-concavity. We also make connections between bi-$s^*$-concavity and finiteness of the CsorgH{o} - Revesz constant of $F$ which plays an important role in the theory of quantile processes.
We introduce a new shape-constrained class of distribution functions on R, the bi-$s^*$-concave class. In parallel to results of Dumbgen, Kolesnyk, and Wilke (2017) for what they called the class of bi-log-concave distribution functions, we show that every s-concave density f has a bi-$s^*$-concave distribution function $F$ and that every bi-$s^*$-concave distribution function satisfies $gamma (F) le 1/(1+s)$ where finiteness of $$ gamma (F) equiv sup_{x} F(x) (1-F(x)) frac{| f (x)|}{f^2 (x)}, $$ the CsorgH{o} - Revesz constant of F, plays an important role in the theory of quantile processes on $R$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا