Do you want to publish a course? Click here

Failure of separation by quasi-homomorphisms in mapping class groups

170   0   0.0 ( 0 )
 Added by D. Kotschick
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We show that mapping class groups of surfaces of genus at least two contain elements of infinite order that are not conjugate to their inverses, but whose powers have bounded torsion lengths. In particular every homogeneous quasi-homomorphism vanishes on such an element, showing that elements of infinite order not conjugate to their inverses cannot be separated by quasi-homomorphisms.



rate research

Read More

122 - Jiming Ma , Jiajun Wang 2019
We construct infinitely many linearly independent quasi-homomorphisms on the mapping class group of a Riemann surface with genus at least two which vanish on a handlebody subgroup. As a corollary, we disprove a conjecture of Reznikov on bounded width in Heegaard splittings. Another corollary is that there are infinitely many linearly independent quasi-invariants on the Heegaard splittings of three-manifolds.
142 - Nicholas G. Vlamis 2020
We prove that the mapping class group of a surface obtained from removing a Cantor set from either the 2-sphere, the plane, or the interior of the closed 2-disk has no proper countable-index subgroups. The proof is an application of the automatic continuity of these groups, which was established by Mann. As corollaries, we see that these groups do not contain any proper finite-index subgroups and that each of these groups have trivial abelianization.
We study the large scale geometry of mapping class groups MCG(S), using hyperbolicity properties of curve complexes. We show that any self quasi-isometry of MCG(S) (outside a few sporadic cases) is a bounded distance away from a left-multiplication, and as a consequence obtain quasi-isometric rigidity for MCG(S), namely that groups quasi-isometric to MCG(S) are virtually equal to it. (The latter theorem was proved by Hamenstadt using different methods). As part of our approach we obtain several other structural results: a description of the tree-graded structure on the asymptotic cone of MCG(S); a characterization of the image of the curve-complex projection map from MCG(S) to the product of the curve complexes of essential subsurfaces of S; and a construction of Sigma-hulls in MCG(S), an analogue of convex hulls.
We survey recent developments on mapping class groups of surfaces of infinite topological type.
We study two actions of big mapping class groups. The first is an action by isometries on a Gromov-hyperbolic graph. The second is an action by homeomorphisms on a circle in which the vertices of the graph naturally embed. The first two parts of the paper are devoted to the definition of objects and tools needed to introduce these two actions; in particular, we define and prove the existence of equators for infinite type surfaces, we define the hyperbolic graph and the circle needed for the actions, and we describe the Gromov-boundary of the graph using the embedding of its vertices in the circle. The third part focuses on some fruitful relations between the dynamics of the two actions. For example, we prove that loxodromic elements (for the first action) necessarily have rational rotation number (for the second action). In addition, we are able to construct non trivial quasimorphisms on many subgroups of big mapping class groups, even if they are not acylindrically hyperbolic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا