Do you want to publish a course? Click here

Monomial Dynamical Systems over Finite Fields

219   0   0.0 ( 0 )
 Added by Abdul Salam Jarrah
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

An important problem in the theory of finite dynamical systems is to link the structure of a system with its dynamics. This paper contains such a link for a family of nonlinear systems over an arbitrary finite field. For systems that can be described by monomials, one can obtain information about the limit cycle structure from the structure of the monomials. In particular, the paper contains a sufficient condition for a monomial system to have only fixed points as limit cycles. The condition is derived by reducing the problem to the study of a Boolean monomial system and a linear system over a finite ring.



rate research

Read More

153 - Helge Glockner 2008
We give an exposition of the theory of invariant manifolds around a fixed point, in the case of time-discrete, analytic dynamical systems over a complete ultrametric field K. Typically, we consider an analytic manifold M modelled on an ultrametric Banach space over K, an analytic self-map f of M, and a fixed point p of f. Under suitable conditions on the tangent map of f at p, we construct a centre-stable manifold, a centre manifold, respectively, an r-stable manifold around p, for a given positive real number r not exceeding 1. The invariant manifolds are useful in the theory of Lie groups over local fields, where they allow results to be extended to the case of positive characteristic which previously were only available in characteristic zero (i.e., for p-adic Lie groups).
147 - Xavier Bressaud 2012
In this article we study conditions to be a continuous or a measurable eigenvalue of finite rank minimal Cantor systems, that is, systems given by an ordered Bratteli diagram with a bounded number of vertices per level. We prove that continuous eigenvalues always come from the stable subspace associated to the incidence matrices of the Bratteli diagram and we study rationally independent generators of the additive group of continuous eigenvalues. Given an ergodic probability measure, we provide a general necessary condition to be a measurable eigenvalue. Then we consider two families of examples. A first one to illustrate that measurable eigenvalues do not need to come from the stable space. Finally we study Toeplitz type Cantor minimal systems of finite rank. We recover classical results in the continuous case and we prove measurable eigenvalues are always rational but not necessarily continuous.
111 - N.B. Janson , P.E. Kloeden 2018
In [Janson & Marsden 2017] a dynamical system with a plastic self-organising velocity vector field was introduced, which was inspired by the architectural plasticity of the brain and proposed as a possible conceptual model of a cognitive system. Here we provide a more rigorous mathematical formulation of this problem, make several simplifying assumptions about the form of the model and of the applied stimulus, and perform its mathematical analysis. Namely, we explore the existence, uniqueness, continuity and smoothness of both the plastic velocity vector field controlling the observable behaviour of the system, and of the behaviour itself. We also analyse the existence of pullback attractors and of forward limit sets in such a non-autonomous system of a special form. Our results verify the consistency of the problem, which was only assumed in the previous work, and pave the way to constructing models with more sophisticated cognitive functions.
In this paper, we study the class of free hyperplane arrangements. Specifically, we investigate the relations between freeness over a field of finite characteristic and freeness over $mathbb{Q}$.
We introduce a new concept of finite-time entropy which is a local version of the classical concept of metric entropy. Based on that, a finite-time version of Pesins entropy formula and also an explicit formula of finite-time entropy for $2$-D systems are derived. We also discuss about how to apply the finite-time entropy field to detect special dynamical structures such as Lagrangian coherent structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا