Do you want to publish a course? Click here

A cohomological description of connections and curvature over posets

58   0   0.0 ( 0 )
 Added by Giuseppe Ruzzi
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

What remains of a geometrical notion like that of a principal bundle when the base space is not a manifold but a coarse graining of it, like the poset formed by a base for the topology ordered under inclusion? Motivated by finding a geometrical framework for developing gauge theories in algebraic quantum field theory, we give, in the present paper, a first answer to this question. The notions of transition function, connection form and curvature form find a nice description in terms of cohomology, in general non-Abelian, of a poset with values in a group $G$. Interpreting a 1--cocycle as a principal bundle, a connection turns out to be a 1--cochain associated in a suitable way with this 1--cocycle; the curvature of a connection turns out to be its 2--coboundary. We show the existence of nonflat connections, and relate flat connections to homomorphisms of the fundamental group of the poset into $G$. We discuss holonomy and prove an analogue of the Ambrose-Singer theorem.



rate research

Read More

In algebraic quantum field theory the spacetime manifold is replaced by a suitable base for its topology ordered under inclusion. We explain how certain topological invariants of the manifold can be computed in terms of the base poset. We develop a theory of connections and curvature for bundles over posets in search of a formulation of gauge theories in algebraic quantum field theory.
Polyhedral products were defined by Bahri, Bendersky, Cohen and Gitler, to be spaces obtained as unions of certain product spaces indexed by the simplices of an abstract simplicial complex. In this paper we give a very general homotopy theoretic construction of polyhedral products over arbitrary pointed posets. We show that under certain restrictions on the poset $calp$, that include all known cases, the cohomology of the resulting spaces can be computed as an inverse limit over $calp$ of the cohomology of the building blocks. This motivates the definition of an analogous algebraic construction - the polyhedral tensor product. We show that for a large family of posets, the cohomology of the polyhedral product is given by the polyhedral tensor product. We then restrict attention to polyhedral posets, a family of posets that include face posets of simplicial complexes, and simplicial posets, as well as many others. We define the Stanley-Reisner ring of a polyhedral poset and show that, like in the classical cases, these rings occur as the cohomology of certain polyhedral products over the poset in question. For any pointed poset $calp$ we construct a simplicial poset $s(calp)$, and show that if $calp$ is a polyhedral poset then polyhedral products over $calp$ coincide up to homotopy with the corresponding polyhedral products over $s(calp)$.
144 - Daniel A. Ramras 2018
We compute the homotopy type of the moduli space of flat, unitary connections over aspherical surfaces, after stabilizing with respect to the rank of the underlying bundle. Over the orientable surface M^g, we show that this space has the homotopy type of the infinite symmetric product of M^g, generalizing a well-known fact for the torus. Over a non-orientable surface, we show that this space is homotopy equivalent to a disjoint union of two tori, whose common dimension corresponds to the rank of the first (co)homology group of the surface. Similar calculations are provided for products of surfaces, and show a close analogy with the Quillen-Lichtenbaum conjectures in algebraic K-theory. The proofs utilize Tyler Lawsons work in deformation K-theory, and rely heavily on Yang-Mills theory and gauge theory.
412 - Sho Hasui 2013
A quasitoric manifold is a smooth manifold with a locally standard torus action for which the orbit space is identified with a simple polytope. For a class of topological spaces, the class is called strongly cohomologically rigid if any isomorphism of cohomology rings can be realized as a homeomorphism. This paper shows the strong cohomological rigidity of the class of quasitoric manifolds over $I^3$.
The concept of generalised (in the sense of Colombeau) connection on a principal fibre bundle is introduced. This definition is then used to extend results concerning the geometry of principal fibre bundles to those that only have a generalised connection. Some applications to singular solutions of Yang-Mills theory are given.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا