Do you want to publish a course? Click here

Intermediate integer programming representations using value disjunctions

62   0   0.0 ( 0 )
 Added by Matthias K\\\"oppe
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a general technique to create an extended formulation of a mixed-integer program. We classify the integer variables into blocks, each of which generates a finite set of vector values. The extended formulation is constructed by creating a new binary variable for each generated value. Initial experiments show that the extended formulation can have a more compact complete description than the original formulation. We prove that, using this reformulation technique, the facet description decomposes into one ``linking polyhedron per block and the ``aggregated polyhedron. Each of these polyhedra can be analyzed separately. For the case of identical coefficients in a block, we provide a complete description of the linking polyhedron and a polynomial-time separation algorithm. Applied to the knapsack with a fixed number of distinct coefficients, this theorem provides a complete description in an extended space with a polynomial number of variables.



rate research

Read More

In this paper, we consider the problem of joint antenna selection and analog beamformer design in downlink single-group multicast networks. Our objective is to reduce the hardware costs by minimizing the number of required phase shifters at the transmitter while fulfilling given distortion limits at the receivers. We formulate the problem as an L0 minimization problem and devise a novel branch-and-cut based algorithm to solve the resulting mixed-integer nonlinear program to optimality. We also propose a suboptimal heuristic algorithm to solve the above problem approximately with a low computational complexity. Computational results illustrate that the solutions produced by the proposed heuristic algorithm are optimal in most cases. The results also indicate that the performance of the optimal methods can be significantly improved by initializing with the result of the suboptimal method.
Exactly solving multi-objective integer programming (MOIP) problems is often a very time consuming process, especially for large and complex problems. Parallel computing has the potential to significantly reduce the time taken to solve such problems, but only if suitable algorithms are used. The first of our new algorithms follows a simple technique that demonstrates impressive performance for its design. We then go on to introduce new theory for developing more efficient parallel algorithms. The theory utilises elements of the symmetric group to apply a permutation to the objective functions to assign different workloads, and applies to algorithms that order the objective functions lexicographically. As a result, information and updated bounds can be shared in real time, creating a synergy between threads. We design and implement two algorithms that take advantage of such theory. To properly analyse the running time of our three algorithms, we compare them against two existing algorithms from the literature, and against using multiple threads within our chosen IP solver, CPLEX. This survey of six different parallel algorithms, the first of its kind, demonstrates the advantages of parallel computing. Across all problem types tested, our new algorithms are on par with existing algorithms on smaller cases and massively outperform the competition on larger cases. These new algorithms, and freely available implementations, allows the investigation of complex MOIP problems with four or more objectives.
We study robust convex quadratic programs where the uncertain problem parameters can contain both continuous and integer components. Under the natural boundedness assumption on the uncertainty set, we show that the generic problems are amenable to exact copositive programming reformulations of polynomial size. These convex optimization problems are NP-hard but admit a conservative semidefinite programming (SDP) approximation that can be solved efficiently. We prove that the popular approximate S-lemma method --- which is valid only in the case of continuous uncertainty --- is weaker than our approximation. We also show that all results can be extended to the two-stage robust quadratic optimization setting if the problem has complete recourse. We assess the effectiveness of our proposed SDP reformulations and demonstrate their superiority over the state-of-the-art solution schemes on instances of least squares, project management, and multi-item newsvendor problems.
105 - Sven Leyffer , Paul Manns 2021
We propose a trust-region method that solves a sequence of linear integer programs to tackle integer optimal control problems regularized with a total variation penalty. The total variation penalty allows us to prove the existence of minimizers of the integer optimal control problem. We introduce a local optimality concept for the problem, which arises from the infinite-dimensional perspective. In the case of a one-dimensional domain of the control function, we prove convergence of the iterates produced by our algorithm to points that satisfy first-order stationarity conditions for local optimality. We demonstrate the theoretical findings on a computational example.
The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global epsilon-optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solver can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithms ability to generate strong dual bounds through extensive computational experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا