Hessenberg varieties are not pure dimensional


Abstract in English

We study a family of subvarieties of the flag variety defined by certain linear conditions, called Hessenberg varieties. We compare them to Schubert varieties. We prove that some Schubert varieties can be realized as Hessenberg varieties and vice versa. Our proof explicitly identifies these Schubert varieties by their permutation and computes their dimension. We use this to answer an open question by proving that Hessenberg varieties are not always pure dimensional. We give examples that neither semisimple nor nilpotent Hessenberg varieties need be pure; the latter are connected, non-pure-dimensional Hessenberg varieties. Our methods require us to generalize the definition of Hessenberg varieties.

Download