Do you want to publish a course? Click here

Selmer groups of abelian varieties in extensions of function fields

114   0   0.0 ( 0 )
 Added by Amilcar Pacheco
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

Let $k$ be a field of characteristic $q$, $cac$ a smooth geometrically connected curve defined over $k$ with function field $K:=k(cac)$. Let $A/K$ be a non constant abelian variety defined over $K$ of dimension $d$. We assume that $q=0$ or $>2d+1$. Let $p e q$ be a prime number and $cactocac$ a finite geometrically textsc{Galois} and etale cover defined over $k$ with function field $K:=k(cac)$. Let $(tau,B)$ be the $K/k$-trace of $A/K$. We give an upper bound for the $bbz_p$-corank of the textsc{Selmer} group $text{Sel}_p(Atimes_KK)$, defined in terms of the $p$-descent map. As a consequence, we get an upper bound for the $bbz$-rank of the textsc{Lang-Neron} group $A(K)/tauB(k)$. In the case of a geometric tower of curves whose textsc{Galois} group is isomorphic to $bbz_p$, we give sufficient conditions for the textsc{Lang-Neron} group of $A$ to be uniformly bounded along the tower.



rate research

Read More

209 - Yifeng Liu , Yichao Tian 2017
This article has three goals. First, we generalize the result of Deuring and Serre on the characterization of supersingular locus of modular curves to all Shimura varieties given by totally indefinite quaternion algebras over totally real number fields. Second, we generalize the result of Ribet on arithmetic level raising to such Shimura varieties in the inert case. Third, as an application to number theory, we use the previous results to study the Selmer group of certain triple product motive of an elliptic curve, in the context of the Bloch--Kato conjecture.
Let $Y$ be a principal homogeneous space of an abelian surface, or a K3 surface, over a finitely generated extension of $mathbb{Q}$. In 2008, Skorobogatov and Zarhin showed that the Brauer group modulo algebraic classes $text{Br}, Y/ text{Br}_1, Y$ is finite. We study this quotient for the family of surfaces that are geometrically isomorphic to a product of isogenous non-CM elliptic curves, as well as the related family of geometrically Kummer surfaces; both families can be characterized by their geometric Neron-Severi lattices. Over a field of characteristic $0$, we prove that the existence of a strong uniform bound on the size of the odd-torsion of $text{Br}, Y / text{Br}_1, Y$ is equivalent to the existence of a strong uniform bound on integers $n$ for which there exist non-CM elliptic curves with abelian $n$-division fields. Using the same methods we show that, for a fixed prime $p$, a number field $k$ of fixed degree $r$, and a fixed discriminant of the geometric Neron-Severi lattice, $(text{Br}, Y / text{Br}_1, Y)[p^infty]$ is bounded by a constant that depends only on $p$, $r$, and the discriminant.
196 - Igor Nikolaev 2020
The Shafarevich-Tate group $W (mathscr{A})$ measures the failure of the Hasse principle for an abelian variety $mathscr{A}$. Using a correspondence between the abelian varieties and the higher dimensional non-commutative tori, we prove that $W (mathscr{A})cong Cl~(Lambda)oplus Cl~(Lambda)$ or $W (mathscr{A})cong left(mathbf{Z}/2^kmathbf{Z}right) oplus Cl_{~mathbf{odd}}~(Lambda)oplus Cl_{~mathbf{odd}}~(Lambda)$, where $Cl~(Lambda)$ is the ideal class group of a ring $Lambda$ associated to the K-theory of the non-commutative tori and $2^k $ divides the order of $Cl~(Lambda)$. The case of elliptic curves with complex multiplication is considered in detail.
In this article, we show that for any non-isotrivial family of abelian varieties over a rational base with big monodromy, those members that have adelic Galois representation with image as large as possible form a density-$1$ subset. Our results can be applied to a number of interesting families of abelian varieties, such as rational families dominating the moduli of Jacobians of hyperelliptic curves, trigonal curves, or plane curves. As a consequence, we prove that for any dimension $g geq 3$, there are infinitely many abelian varieties over $mathbb Q$ with adelic Galois representation having image equal to all of $operatorname{GSp}_{2g}(widehat{mathbb Z})$.
133 - Amilcar Pacheco 2003
Let $C$ be a smooth projective curve defined over a number field $k$, $X/k(C)$ a smooth projective curve of positive genus, $J_X$ the Jacobian variety of $X$ and $(tau,B)$ the $k(C)/k$-trace of $J_X$. We estimate how the rank of $J_X(k(C))/tau B(k)$ varies when we take an unramified abelian cover $pi:Cto C$ defined over $k$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا