Do you want to publish a course? Click here

Constructing the hyperdefinable group from the group configuration

63   0   0.0 ( 0 )
 Added by Jessica Millar Ms.
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

For simple theories with a strong version of amalgamation we obtain the canonical hyperdefinable group from the group configuration. This provides a generalization to simple theories of the group configuration theorem for stable theories.



rate research

Read More

207 - Ehud Hrushovski 2020
We work in a first-order setting where structures are spread out over a metric space, with quantification allowed only over bounded subsets. Assuming a doubling property for the metric space, we define a canonical {em core} $mathcal{J}$ associated to such a theory, a locally compact structure that embeds into the type space over any model. The automorphism group of $mathcal{J}$, modulo certain infinitesimal automorphisms, is a locally compact group $mathcal{G}$. The automorphism groups of models of the theory are related with $mathcal{G}$, not in general via a homomorphism, but by a {em quasi-homomorphism}, respecting multiplication up to a certain canonical compact error set. This fundamental structure is applied to describe the nature of approximate subgroups. Specifically we obtain a full classification of (properly) approximate lattices of $SL_n({mathbb{R}})$ or $SL_n({mathbb{Q}}_p)$.
We show that the countable universal homogeneous meet-tree has a generic automorphism, but it does not have a generic pair of automorphisms.
106 - Ehud Hrushovski 2009
We note a parallel between some ideas of stable model theory and certain topics in finite combinatorics related to the sum-product phenomenon. For a simple linear group G, we show that a finite subset X with |X X ^{-1} X |/ |X| bounded is close to a finite subgroup, or else to a subset of a proper algebraic subgroup of G. We also find a connection with Lie groups, and use it to obtain some consequences suggestive of topological nilpotence. Combining these methods with Gromovs proof, we show that a finitely generated group with an approximate subgroup containing any given finite set must be nilpotent-by-finite. Model-theoretically we prove the independence theorem and the stabilizer theorem in a general first-order setting.
72 - Tomasz Rzepecki 2016
We extend some recent results about bounded invariant equivalence relations and invariant subgroups of definable groups: we show that type-definability and smoothness are equivalent conditions in a wider class of relations than heretofore considered, which includes all the cases for which the equivalence was proved before. As a by-product, we show some analogous results in purely topological context (without direct use of model theory).
We improve on and generalize a 1960 result of Maltsev. For a field $F$, we denote by $H(F)$ the Heisenberg group with entries in $F$. Maltsev showed that there is a copy of $F$ defined in $H(F)$, using existential formulas with an arbitrary non-commuting pair $(u,v)$ as parameters. We show that $F$ is interpreted in $H(F)$ using computable $Sigma_1$ formulas with no parameters. We give two proofs. The first is an existence proof, relying on a result of Harrison-Trainor, Melnikov, R. Miller, and Montalban. This proof allows the possibility that the elements of $F$ are represented by tuples in $H(F)$ of no fixed arity. The second proof is direct, giving explicit finitary existential formulas that define the interpretation, with elements of $F$ represented by triples in $H(F)$. Looking at what was used to arrive at this parameter-free interpretation of $F$ in $H(F)$, we give general conditions sufficient to eliminate parameters from interpretations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا