Do you want to publish a course? Click here

Local Euler-Maclaurin formula for polytopes

112   0   0.0 ( 0 )
 Added by Nicole Berline
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

We give a local Euler-Maclaurin formula for rational convex polytopes in a rational euclidean space . For every affine rational polyhedral cone C in a rational euclidean space W, we construct a differential operator of infinite order D(C) on W with constant rational coefficients, which is unchanged when C is translated by an integral vector. Then for every convex rational polytope P in a rational euclidean space V and every polynomial function f (x) on V, the sum of the values of f(x) at the integral points of P is equal to the sum, for all faces F of P, of the integral over F of the function D(N(F)).f, where we denote by N(F) the normal cone to P along F.



rate research

Read More

Consider the Riemann sum of a smooth compactly supported function h(x) on a polyhedron in R^d, sampled at the points of the lattice Z^d/t. We give an asymptotic expansion when t goes to infinity, writing each coefficient of this expansion as a sum indexed by the faces f of the polyhedron, where the f-term is the integral over f of a differential operator applied to the function h(x). In particular, if a Euclidean scalar product is chosen, we prove that the differential operator for the face f can be chosen (in a unique way) to involve only normal derivatives to f. Our formulas are valid for a semi-rational polyhedron and a real sampling parameter t, if we allow for step-polynomial coefficients, instead of just constant ones.
80 - Jihong Guo , Yunpeng Liu 2020
The Euler-Maclaurin summation formula is generalized to a modified form by expanding the periodic Bernoulli polynomials as its Fourier series and taking cuts, which includes both the Euler-Maclaurin summation formula and the Poission summation formula as special cases. By making use of the modified formula, a numerical summation method is obtained and the error can be controlled. The modified formula is also generalized from one dimention to two dimentions. Examples of its applications in statistical physics are also discussed.
We express the matroid polytope $P_M$ of a matroid $M$ as a signed Minkowski sum of simplices, and obtain a formula for the volume of $P_M$. This gives a combinatorial expression for the degree of an arbitrary torus orbit closure in the Grassmannian $Gr_{k,n}$. We then derive analogous results for the independent set polytope and the associated flag matroid polytope of $M$. Our proofs are based on a natural extension of Postnikovs theory of generalized permutohedra.
85 - Sharon Robins 2021
We study the integer decomposition property of lattice polytopes associated with the $n$-dimensional smooth complete fans with at most $n+3$ rays. Using the classification of smooth complete fans by Kleinschmidt and Batyrev and a reduction to lower dimensional polytopes we prove the integer decomposition property for lattice polytopes in this setting.
Results of Koebe (1936), Schramm (1992), and Springborn (2005) yield realizations of $3$-polytopes with edges tangent to the unit sphere. Here we study the algebraic degrees of such realizations. This initiates the research on constrained realization spaces of polytopes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا