Do you want to publish a course? Click here

Limit theorems for weighted samples with applications to Sequential Monte Carlo Methods

271   0   0.0 ( 0 )
 Added by Eric Moulines
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

In the last decade, sequential Monte-Carlo methods (SMC) emerged as a key tool in computational statistics. These algorithms approximate a sequence of distributions by a sequence of weighted empirical measures associated to a weighted population of particles. These particles and weights are generated recursively according to elementary transformations: mutation and selection. Examples of applications include the sequential Monte-Carlo techniques to solve optimal non-linear filtering problems in state-space models, molecular simulation, genetic optimization, etc. Despite many theoretical advances the asymptotic property of these approximations remains of course a question of central interest. In this paper, we analyze sequential Monte Carlo methods from an asymptotic perspective, that is, we establish law of large numbers and invariance principle as the number of particles gets large. We introduce the concepts of weighted sample consistency and asymptotic normality, and derive conditions under which the mutation and the selection procedure used in the sequential Monte-Carlo build-up preserve these properties. To illustrate our findings, we analyze SMC algorithms to approximate the filtering distribution in state-space models. We show how our techniques allow to relax restrictive technical conditions used in previously reported works and provide grounds to analyze more sophisticated sequential sampling strategies.



rate research

Read More

We establish a central limit theorem for (a sequence of) multivariate martingales which dimension potentially grows with the length $n$ of the martingale. A consequence of the results are Gaussian couplings and a multiplier bootstrap for the maximum of a multivariate martingale whose dimensionality $d$ can be as large as $e^{n^c}$ for some $c>0$. We also develop new anti-concentration bounds for the maximum component of a high-dimensional Gaussian vector, which we believe is of independent interest. The results are applicable to a variety of settings. We fully develop its use to the estimation of context tree models (or variable length Markov chains) for discrete stationary time series. Specifically, we provide a bootstrap-based rule to tune several regularization parameters in a theoretically valid Lepski-type method. Such bootstrap-based approach accounts for the correlation structure and leads to potentially smaller penalty choices, which in turn improve the estimation of the transition probabilities.
This paper proposes a family of weighted batch means variance estimators, which are computationally efficient and can be conveniently applied in practice. The focus is on Markov chain Monte Carlo simulations and estimation of the asymptotic covariance matrix in the Markov chain central limit theorem, where conditions ensuring strong consistency are provided. Finite sample performance is evaluated through auto-regressive, Bayesian spatial-temporal, and Bayesian logistic regression examples, where the new estimators show significant computational gains with a minor sacrifice in variance compared with existing methods.
We consider Markov chain Monte Carlo methods for calculating conditional p values of statistical models for count data arising in Box-Behnken designs. The statistical model we consider is a discrete version of the first-order model in the response surface methodology. For our models, the Markov basis, a key notion to construct a connected Markov chain on a given sample space, is characterized as generators of the toric ideals for the centrally symmetric configurations of root system D_n. We show the structure of the Groebner bases for these cases. A numerical example for an imaginary data set is given.
It is known that a Markov basis of the binary graph model of a graph $G$ corresponds to a set of binomial generators of cut ideals $I_{widehat{G}}$ of the suspension $widehat{G}$ of $G$. In this paper, we give another application of cut ideals to statistics. We show that a set of binomial generators of cut ideals is a Markov basis of some regular two-level fractional factorial design. As application, we give a Markov basis of degree 2 for designs defined by at most two relations.
83 - Zhigang Bao 2017
In this paper, we study a high-dimensional random matrix model from nonparametric statistics called the Kendall rank correlation matrix, which is a natural multivariate extension of the Kendall rank correlation coefficient. We establish the Tracy-Widom law for its largest eigenvalue. It is the first Tracy-Widom law for a nonparametric random matrix model, and also the first Tracy-Widom law for a high-dimensional U-statistic.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا