Do you want to publish a course? Click here

Extension of Functions with Small Oscillation

60   0   0.0 ( 0 )
 Added by Wee-Kee Tang
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

A classical theorem of Kuratowski says that every Baire one function on a G_delta subspace of a Polish (= separable completely metrizable) space X can be extended to a Baire one function on X. Kechris and Louveau introduced a finer gradation of Baire one functions into small Baire classes. A Baire one function f is assigned into a class in this heirarchy depending on its oscillation index beta(f). We prove a refinement of Kuratowskis theorem: if Y is a subspace of a metric space X and f is a real-valued function on Y such that beta_{Y}(f)<omega^{alpha}, alpha < omega_1, then f has an extension F onto X so that beta_X(F)is not more than omega^{alpha}. We also show that if f is a continuous real valued function on Y, then f has an extension F onto X so that beta_{X}(F)is not more than 3. An example is constructed to show that this result is optimal.



rate research

Read More

We characterize the validity of the Whitney extension theorem in the ultradifferentiable Roumieu setting with controlled loss of regularity. Specifically, we show that in the main Theorem 1.3 of [15] condition (1.3) can be dropped. Moreover, we clarify some questions that remained open in [15].
In this paper we consider properties of medians as they pertain to the continuity and vanishing oscillation of a function. Our approach is based on the observation that medians are related to local sharp maximal functions restricted to a cube of $R^n$.
Many different types of fractional calculus have been defined, which may be categorised into broad classes according to their properties and behaviours. Two types that have been much studied in the literature are the Hadamard-type fractional calculus and tempered fractional calculus. This paper establishes a connection between these two definitions, writing one in terms of the other by making use of the theory of fractional calculus with respect to functions. By extending this connection in a natural way, a generalisation is developed which unifies several existing fractional operators: Riemann--Liouville, Caputo, classical Hadamard, Hadamard-type, tempered, and all of these taken with respect to functions. The fundamental calculus of these generalised operators is established, including semigroup and reciprocal properties as well as application to some example functions. Function spaces are constructed in which the new operators are defined and bounded. Finally, some formulae are derived for fractional integration by parts with these operators.
Let $K$ be a compact metric space. A real-valued function on $K$ is said to be of Baire class one (Baire-1) if it is the pointwise limit of a sequence of continuous functions. In this paper, we study two well known ordinal indices of Baire-1 functions, the oscillation index $beta$ and the convergence index $gamma$. It is shown that these two indices are fully compatible in the following sense : a Baire-1 function $f$ satisfies $beta(f) leq omega^{xi_1} cdot omega^{xi_2}$ for some countable ordinals $xi_1$ and $xi_2$ if and only if there exists a sequence of Baire-1 functions $(f_n)$ converging to $f$ pointwise such that $sup_nbeta(f_n) leq omega^{xi_1}$ and $gamma((f_n)) leq omega^{xi_2}$. We also obtain an extension result for Baire-1 functions analogous to the Tietze Extension Theorem. Finally, it is shown that if $beta(f) leq omega^{xi_1}$ and $beta(g) leq omega^{xi_2},$ then $beta(fg) leq omega^{xi},$ where $xi=max{xi_1+xi_2, xi_2+xi_1}}.$ These results do not assume the boundedness of the functions involved.
209 - Dmitriy Stolyarov 2021
We study the inequalities of the type $|int_{mathbb{R}^d} Phi(K*f)| lesssim |f|_{L_1(mathbb{R}^d)}^p$, where the kernel $K$ is homogeneous of order $alpha - d$ and possibly vector-valued, the function $Phi$ is positively $p$-homogeneous, and $p = d/(d-alpha)$. Under mild regularity assumptions on $K$ and $Phi$, we find necessary and sufficient conditions on these functions under which the inequality holds true with a uniform constant for all sufficiently regular functions $f$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا