Vibrations of a beam between stops: convergence of a fully discretized approximation


Abstract in English

We consider the dynamics of an elastic beam which is clamped at its left end to a vibrating support and which can move freely at its right end between two rigid obstacles (the stops). We model the contact with Signorinis complementary conditions between the displacement and the shear stress. For this infinite dimensional contact problem, we propose a family of fully discretized approximations and their convergence is proved. Moreover some examples of implementation are presented.

Download