Do you want to publish a course? Click here

A Simple Proof of the Aztec Diamond Theorem

83   0   0.0 ( 0 )
 Added by Sen-Peng Eu
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

Based on a bijection between domino tilings of an Aztec diamond and non-intersecting lattice paths, a simple proof of the Aztec diamond theorem is given in terms of Hankel determinants of the large and small Schroder numbers.



rate research

Read More

71 - Greg Knese 2019
A short and simple proof of necessity in the McCullough-Quiggin characterization of positive semi-definite kernels with the complete Pick property is presented.
114 - Thomas Vidick , Henry Yuen 2016
We give a simple proof of the exponential de Finetti theorem due to Renner. Like Renners proof, ours combines the post-selection de Finetti theorem, the Gentle Measurement lemma, and the Chernoff bound, but avoids virtually all calculations, including any use of the theory of types.
We present a motivated exposition of the proof of the following Tverberg Theorem: For every integers $d,r$ any $(d+1)(r-1)+1$ points in $mathbb R^d$ can be decomposed into $r$ groups such that all the $r$ convex hulls of the groups have a common point. The proof is by well-known reduction to the Barany Theorem. However, our exposition is easier to grasp because additional constructions (of an embedding $mathbb R^dsubsetmathbb R^{d+1}$, of vectors $varphi_{j,i}$ and statement of the Barany Theorem) are not introduced in advance in a non-motivated way, but naturally appear in an attempt to construct the required decomposition. This attempt is based on rewriting several equalities between vectors as one equality between vectors of higher dimension.
132 - Dennis Eichhorn , Hayan Nam , 2018
In two papers, Little and Sellers introduced an exciting new combinatorial method for proving partition identities which is not directly bijective. Instead, they consider various sets of weighted tilings of a $1 times infty$ board with squares and dominoes, and for each type of tiling they construct a generating function in two different ways, which generates a $q$-series identity. Using this method, they recover quite a few classical $q$-series identities, but Eulers Pentagonal Number Theorem is not among them. In this paper, we introduce a key parameter when constructing the generating functions of various sets of tilings which allows us to recover Eulers Pentagonal Number Theorem along with an infinite family of generalizations.
100 - Pu Qiao , Xingzhi Zhan 2018
A consequence of Ores classic theorem characterizing the maximal graphs with given order and diameter is a determination of the largest such graphs. We give a very short and simple proof of this smaller result, based on a well-known elementary observation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا