Do you want to publish a course? Click here

The 3-cuspidal quartic and braid monodromy of degree 4 coverings

167   0   0.0 ( 0 )
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

We study the discriminant of a degree 4 extension given by a deformed bidouble cover, i.e., by equations z^2= u + a w, w^2= v + bz. We first show that the discriminant surface is a quartic which is cuspidal on a twisted cubic, i.e.,is the discriminant of the general equation of degree 3. We then take a(u,v), b(u,v) and get a 3-cuspidal affine quartic curve whose braid monodromy we compute. This calculation of the local braid monodromy is a step towards the determination of global braid monodromies, e.g. for the (a,b,c) surfaces previously considered by the authors. In the revision we fill a gap (noticed by the referee) in the proof of the classical theorem that any quartic surface which has the twisted cubic as cuspidal curve is its tangential developable, and we changed a base point in order to make a picture correct.



rate research

Read More

The {em Wiman-Edge pencil} is the universal family $Cs/mathcal B$ of projective, genus $6$, complex-algebraic curves admitting a faithful action of the icosahedral group $Af_5$. The goal of this paper is to prove that the monodromy of $Cs/mathcal B$ is commensurable with a Hilbert modular group; in particular is arithmetic. We then give a modular interpretation of this, as well as a uniformization of $mathcal B$.
In this thesis, I determine a bound on the defect of terminal Gorenstein quartic 3-folds. More generally, I study the defect of terminal Gorenstein Fano 3-folds of Picard rank 1 and genus at least 3. I state a geometric motivation of non Q-factoriality in the case of quartics.
We study the Prym varieties arising from etale cyclic coverings of degree 7 over a curve of genus 2. These Prym varieties are products of Jacobians JY x JY of genus 3 curves Y with polarization type D=(1,1,1,1,1,7). We describe the fibers of the Prym map between the moduli space of such coverings and the moduli space of abelian sixfolds with polarization type D, admitting an automorphism of order 7.
Let $Xsubset mathbb{P}^4$ be a terminal factorial quartic $3$-fold. If $X$ is non-singular, $X$ is emph{birationally rigid}, i.e. the classical MMP on any terminal $mathbb{Q}$-factorial projective variety $Z$ birational to $X$ always terminates with $X$. This no longer holds when $X$ is singular, but very few examples of non-rigid factorial quartics are known. In this article, we first bound the local analytic type of singularities that may occur on a terminal factorial quartic hypersurface $Xsubset mathbb{P}^4$. A singular point on such a hypersurface is either of type $cA_n$ ($ngeq 1$), or of type $cD_m$ ($mgeq 4$), or of type $cE_6, cE_7$ or $cE_8$. We first show that if $(P in X)$ is of type $cA_n$, $n$ is at most $7$, and if $(P in X)$ is of type $cD_m$, $m$ is at most $8$. We then construct examples of non-rigid factorial quartic hypersurfaces whose singular loci consist (a) of a single point of type $cA_n$ for $2leq nleq 7$ (b) of a single point of type $cD_m$ for $m= 4$ or $5$ and (c) of a single point of type $cE_k$ for $k=6,7$ or $8$.
This paper studies the birational geometry of terminal Gorenstein Fano 3-folds. If Y is not Q-factorial, in most cases, it is possible to describe explicitly the divisor class group Cl Y by running a Minimal Model Program (MMP) on X, a small Q-factorialisation of Y. In this case, Weil non-Cartier divisors are generated by topological traces of K-negative extremal contractions on X. One can show, as an application of these methods, that a number of families of non-factorial terminal Gorenstein Fano 3-folds are rational. In particular, I give some examples of rational quartic hypersurfaces with Cl Y of rank 2, and show that when Cl Y has rank greater than 6, Y is always rational.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا