No Arabic abstract
Let $I_M$ and $I_N$ be defining ideals of toric varieties such that $I_M$ is a projection of $I_N$, i.e. $I_N subseteq I_M$. We give necessary and sufficient conditions for the equality $I_M=rad(I_N+(f_1,...,f_s))$, where $f_1,...,f_s$ belong to $I_M$. Also a method for finding toric varieties which are set-theoretic complete intersection is given. Finally we apply our method in the computation of the arithmetical rank of certain toric varieties and provide the defining equations of the above toric varieties.
Let $Isubset S=K[x_1,...,x_n]$ be a lexsegment edge ideal or the Alexander dual of such an ideal. In both cases it turns out that the arithmetical rank of $I$ is equal to the projective dimension of $S/I.$
We study the closed convex hull of various collections of Hilbert functions. Working over a standard graded polynomial ring with modules that are generated in degree zero, we describe the supporting hyperplanes and extreme rays for the cones generated by the Hilbert functions of all modules, all modules with bounded a-invariant, and all modules with bounded Castelnuovo-Mumford regularity. The first of these cones is infinite-dimensional and simplicial, the second is finite-dimensional but neither simplicial nor polyhedral, and the third is finite-dimensional and simplicial.
We study residues on a complete toric variety X, which are defined in terms of the homogeneous coordinate ring of X. We first prove a global transformation law for toric residues. When the fan of the toric variety has a simplicial cone of maximal dimension, we can produce an element with toric residue equal to 1. We also show that in certain situations, the toric residue is an isomorphism on an appropriate graded piece of the quotient ring. When X is simplicial, we prove that the toric residue is a sum of local residues. In the case of equal degrees, we also show how to represent X as a quotient (Y-{0})/C* such that the toric residue becomes the local residue at 0 in Y.
Let $R$ be the homogeneous coordinate ring of a smooth projective variety $X$ over a field $k$ of characteristic~0. We calculate the $K$-theory of $R$ in terms of the geometry of the projective embedding of $X$. In particular, if $X$ is a curve then we calculate $K_0(R)$ and $K_1(R)$, and prove that $K_{-1}(R)=oplus H^1(C,cO(n))$. The formula for $K_0(R)$ involves the Zariski cohomology of twisted Kahler differentials on the variety.
Richardson varieties are obtained as intersections of Schubert and opposite Schubert varieties. We provide a new family of toric degenerations of Richardson varieties inside Grassmannians by studying Grobner degenerations of their corresponding ideals. These degenerations are parametrised by block diagonal matching fields in the sense of Sturmfels-Zelevinsky. We associate a weight vector to each block diagonal matching field and study its corresponding initial ideal. In particular, we characterise when such ideals are toric, hence providing a family of toric degenerations for Richardson varieties. Given a Richardson variety $X_{w}^v$ and a weight vector ${bf w}_ell$ arising from a matching field, we consider two ideals: an ideal $G_{k,n,ell}|_w^v$ obtained by restricting the initial of the Plucker ideal to a smaller polynomial ring, and a toric ideal defined as the kernel of a monomial map $phi_ell|_w^v$. We first characterise the monomial-free ideals of form $G_{k,n,ell}|_w^v$. Then we construct a family of tableaux in bijection with semi-standard Young tableaux which leads to a monomial basis for the corresponding quotient ring. Finally, we prove that when $G_{k,n,ell}|_w^v$ is monomial-free and the initial ideal in$_{{bf w}_ell}(I(X_w^v))$ is quadratically generated, then all three ideals in$_{{bf w}_ell}(I(X_w^v))$, $G_{k,n,ell}|_w^v$ and ker$(phi_ell|_w^v)$ coincide, and provide a toric degeneration of $X_w^v$.