Do you want to publish a course? Click here

Cremona Convexity, Frame Convexity, and a Theorem of Santalo

94   0   0.0 ( 0 )
 Added by Frank Sottile
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

In 1940, Luis Santalo proved a Helly-type theorem for line transversals to boxes in R^d. An analysis of his proof reveals a convexity structure for ascending lines in R^d that is isomorphic to the ordinary notion of convexity in a convex subset of R^{2d-2}. This isomorphism is through a Cremona transformation on the Grassmannian of lines in P^d, which enables a precise description of the convex hull and affine span of up to d ascending lines: the lines in such an affine span turn out to be the rulings of certain classical determinantal varieties. Finally, we relate Cremona convexity to a new convexity structure that we call frame convexity, which extends to arbitrary-dimensional flats.



rate research

Read More

We present a generalization of the notion of neighborliness to non-polyhedral convex cones. Although a definition of neighborliness is available in the non-polyhedral case in the literature, it is fairly restrictive as it requires all the low-dimensional faces to be polyhedral. Our approach is more flexible and includes, for example, the cone of positive-semidefinite matrices as a special case (this cone is not neighborly in general). We term our generalization Terracini convexity due to its conceptual similarity with the conclusion of Terracinis lemma from algebraic geometry. Polyhedral cones are Terracini convex if and only if they are neighborly. More broadly, we derive many families of non-polyhedral Terracini convex cones based on neighborly cones, linear images of cones of positive semidefinite matrices, and derivative relaxations of Terracini convex hyperbolicity cones. As a demonstration of the utility of our framework in the non-polyhedral case, we give a characterization based on Terracini convexity of the tightness of semidefinite relaxations for certain inverse problems.
214 - Timothy E. Goldberg 2008
M. Brion proved a convexity result for the moment map image of an irreducible subvariety of a compact integral Kaehler manifold preserved by the complexification of the Hamiltonian group action. V. Guillemin and R. Sjamaar generalized this result to irreducible subvarieties preserved only by a Borel subgroup. In another direction, L. OShea and R. Sjamaar proved a convexity result for the moment map image of the submanifold fixed by an antisymplectic involution. Analogous to Guillemin and Sjamaars generalization of Brions theorem, in this paper we generalize OShea and Sjamaars result, proving a convexity theorem for the moment map image of the involution fixed set of an irreducible subvariety preserved by a Borel subgroup.
185 - Vuong Bui , Roman Karasev 2018
We give an improvement of the Caratheodory theorem for strong convexity (ball convexity) in $mathbb R^n$, reducing the Caratheodory number to $n$ in several cases; and show that the Caratheodory number cannot be smaller than $n$ for an arbitrary gauge body $K$. We also give an improved topological criterion for one convex body to be a Minkowski summand of another.
Consider a measurable space with a finite vector measure. This measure defines a mapping of the $sigma$-field into a Euclidean space. According to Lyapunovs convexity theorem, the range of this mapping is compact and, if the measure is atomless, this range is convex. Similar ranges are also defined for measurable subsets of the space. We show that the union of the ranges of all subsets having the same given vector measure is also compact and, if the measure is atomless, it is convex. We further provide a geometrically constructed convex compactum in the Euclidean space that contains this union. The equality of these two sets, that holds for two-dimensional measures, can be violated in higher dimensions.
233 - Jeremy Lane 2015
In this paper we prove a convexity and fibre-connectedness theorem for proper maps constructed by Thimms trick on a connected Hamiltonian $G$-space $M$ that generate a Hamiltonian torus action on an open dense submanifold. Since these maps only generate a Hamiltonian torus action on an open dense submanifold of $M$, convexity and fibre-connectedness do not follow immediately from Atiyah-Guillemin-Sternbergs convexity theorem, even if $M$ is compact. The core contribution of this paper is to provide a simple argument circumventing this difficulty. In the case where the map is constructed from a chain of subalgebras we prove that the image is given by a list of inequalities that can be computed explicitly. This generalizes the famous example of Gelfand-Zeitlin systems on coadjoint orbits introduced by Guillemin and Sternberg. Moreover, we prove that if such a map generates a completely integrable torus action on an open dense submanifold of $M$, then all its fibres are smooth embedded submanifolds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا