Do you want to publish a course? Click here

Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond

69   0   0.0 ( 0 )
 Added by Michael Levitin
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

Consider a bounded domain with the Dirichlet condition on a part of the boundary and the Neumann condition on its complement. Does the spectrum of the Laplacian determine uniquely which condition is imposed on which part? We present some results, conjectures and problems related to this variation on the isospectral theme.



rate research

Read More

How close is the Dirichlet-to-Neumann (DtN) map to the square root of the corresponding boundary Laplacian? This question has been actively investigated in recent years. Somewhat surprisingly, a lot of techniques involved can be traced back to a newly rediscovered manuscript of Hormander from the 1950s. We present Hormanders approach and its applications, with an emphasis on eigenvalue estimates and spectral asymptotics. In particular, we obtain results for the DtN maps on non-smooth boundaries in the Riemannian setting, the DtN operators for the Helmholtz equation and the DtN operators on differential forms.
In this work, we propose novel discretizations of the spectral fractional Laplacian on bounded domains based on the integral formulation of the operator via the heat-semigroup formalism. Specifically, we combine suitable quadrature formulas of the integral with a finite element method for the approximation of the solution of the corresponding heat equation. We derive two families of discretizations with order of convergence depending on the regularity of the domain and the function on which the spectral fractional Laplacian is acting. Our method does not require the computation of the eigenpairs of the Laplacian on the considered domain, can be implemented on possibly irregular bounded domains, and can naturally handle different types of boundary constraints. Various numerical simulations are provided to illustrate performance of the proposed method and support our theoretical results.
Let $H_{0, D}$ (resp., $H_{0,N}$) be the Schroedinger operator in constant magnetic field on the half-plane with Dirichlet (resp., Neumann) boundary conditions, and let $H_ell : = H_{0, ell} - V$, $ell =D,N$, where the scalar potential $V$ is non negative, bounded, does not vanish identically, and decays at infinity. We compare the distribution of the eigenvalues of $H_D$ and $H_N$ below the respective infima of the essential spectra. To this end, we construct effective Hamiltonians which govern the asymptotic behaviour of the discrete spectrum of $H_ell$ near $inf sigma_{ess}(H_ell) = inf sigma(H_{0,ell})$, $ell = D,N$. Applying these Hamiltonians, we show that $sigma_{disc}(H_D)$ is infinite even if $V$ has a compact support, while $sigma_{disc}(H_N)$ could be finite or infinite depending on the decay rate of $V$.
In this paper we develop an existence theory for the nonlinear initial-boundary value problem with singular diffusion $partial_t u = text{div}(k(x) abla G(u))$, $u|_{t=0}=u_0$ with Neumann boundary conditions $k(x) abla G(u)cdot u = 0$. Here $xin Bsubset mathbb{R}^d$, a bounded open set with locally Lipchitz boundary, and with $ u$ as the unit outer normal. The function $G$ is Lipschitz continuous and nondecreasing, while $k(x)$ is diagonal matrix. We show that any two weak entropy solutions $u$ and $v$ satisfy $Vert{u(t)-v(t)}Vert_{L^1(B)}le Vert{u|_{t=0}-v|_{t=0}}Vert_{L^1(B)}e^{Ct}$, for almost every $tge 0$, and a constant $C=C(k,G,B)$. If we restrict to the case when the entries $k_i$ of $k$ depend only on the corresponding component, $k_i=k_i(x_i)$, we show that there exists an entropy solution, thus establishing in this case that the problem is well-posed in the sense of Hadamard.
Let $Omegasubsetmathbb{R}^ u$, $ uge 2$, be a $C^{1,1}$ domain whose boundary $partialOmega$ is either compact or behaves suitably at infinity. For $pin(1,infty)$ and $alpha>0$, define [ Lambda(Omega,p,alpha):=inf_{substack{uin W^{1,p}(Omega) u otequiv 0}}dfrac{displaystyle int_Omega | abla u|^p mathrm{d} x - alphadisplaystyleint_{partialOmega} |u|^pmathrm{d}sigma}{displaystyleint_Omega |u|^pmathrm{d} x}, ] where $mathrm{d}sigma$ is the surface measure on $partialOmega$. We show the asymptotics [ Lambda(Omega,p,alpha)=-(p-1)alpha^{frac{p}{p-1}} - ( u-1)H_mathrm{max}, alpha + o(alpha), quad alphato+infty, ] where $H_mathrm{max}$ is the maximum mean curvature of $partialOmega$. The asymptotic behavior of the associated minimizers is discussed as well. The estimate is then applied to the study of the best constant in a boundary trace theorem for expanding domains, to the norm estimate for extension operators and to related isoperimetric inequalities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا