Do you want to publish a course? Click here

Continuous quotients for lattice actions on compact manifolds

155   0   0.0 ( 0 )
 Added by Kevin Whyte
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

Let G be a subgroup of finite index in SL(n,Z) for N > 4. Suppose G acts continuously on a manifold M, with fundamental group Z^n, preserving a measure that is positive on open sets. Further assume that the induced G action on H^1(M) is non-trivial. We show there exists a finite index subgroup G of G and a G equivariant continuous map from M to the n-torus that induces an isomorphism on fundamental groups. We prove more general results providing continuous quotients in cases where the fundamental group of M surjects onto a finitely generated torsion free nilpotent group. We also give some new examples of manifolds with G actions to which the theorems apply.



rate research

Read More

We show that group actions on many treelike compact spaces are not too complicated dynamically. We first observe that an old argument of Seidler implies that every action of a topological group $G$ on a regular continuum is null and therefore also tame. As every local dendron is regular, one concludes that every action of $G$ on a local dendron is null. We then use a more direct method to show that every continuous group action of $G$ on a dendron is Rosenthal representable, hence also tame. Similar results are obtained for median pretrees. As a related result we show that Hellys selection principle can be extended to bounded monotone sequences defined on median pretrees (e.g., dendrons or linearly ordered sets). Finally, we point out some applications of these results to continuous group actions on dendrites.
82 - Yongle Jiang 2021
We prove that for any two continuous minimal (topologically free) actions of the infinite dihedral group on an infinite compact Hausdorff space, they are continuously orbit equivalent only if they are conjugate. We also show the above fails if we replace the infinite dihedral group with certain other virtually cyclic groups, e.g. the direct product of the integer group with any non-abelian finite simple group.
137 - Enhui Shi 2020
Let $Gamma$ be a lattice in ${rm SL}(n, mathbb R)$ with $ngeq 3$ and $mathcal S$ be a closed surface. Then $Gamma$ has no distal minimal action on $mathcal S$.
The paper investigates the (non)existence of compact quotients, by a discrete subgroup, of the homogeneous almost-complex strongly-pseudoconvex manifolds disconvered and classified by Gaussier-Sukhov and K.-H. Lee.
57 - Enhui Shi 2019
In this report, we first recall the Poincares classification theorem for minimal orientation-preserving homeomorphisms on the circle and the Ghys classification theorem for minimal orientation-preserving group actions on the circle. Then we introduce a classification theorem for a specified class of topologically transitive orientation-preserving group actions on the circle by $mathbb Z^d$. Also, some groups that admit/admit no topologically transitive actions on the line are determined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا