Do you want to publish a course? Click here

Positivity of Heights of Semistable Varieties

78   0   0.0 ( 0 )
 Added by Roberto Ferretti
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

We completely solve a problem of S. Zhang about the positivity of a normalized height on the moduli space of semistable varieties of given degree and given dimension.



rate research

Read More

We give an explicit description of the stable reduction of superelliptic curves of the form $y^n=f(x)$ at primes $p$ whose residue characteristic is prime to the exponent $n$. We then use this description to compute the local $L$-factor of the curve and the exponent of conductor at $p$.
We determine the irreducible components of Igusa varieties for Shimura varieties of Hodge type and use that to determine the irreducible components of central leaves. In particular, we show that the discrete Hecke-orbit conjecture is false in general. Our method combines recent work of DAddezio on monodromy of compatible local systems with a generalisation of a method of Hida, using the Honda-Tate theory for Shimura varieties of Hodge type developed by Kisin-Madapusi Pera-Shin. We also determine the irreducible components of Newton strata in Shimura varieties of Hodge type by combining our results with recent work of Zhou-Zhu.
The integral model of a GU(n-1,1) Shimura variety carries a universal abelian scheme over it, and the dual top exterior power of its Lie algebra carries a natural hermitian metric. We express the arithmetic volume of this metrized line bundle, defined as an iterated self-intersection in the Gillet-Soule arithmetic Chow ring, in terms of logarithmic derivatives of Dirichlet L-functions.
172 - Adrian Vasiu 2002
Let k be a perfect field of characteristic p>0. We prove the existence of ascending and descending slope filtrations for Shimura p-divisible objects over k. We use them to classify rationally these objects over bar k. Among geometric applications, we mention two. First we formulate Manin problems for Shimura varieties of Hodge type. We solve them if either pGe 3 or p=2 and two mild conditions hold. Second we formulate integral Manin problems. We solve them for certain Shimura varieties of PEL type.
197 - Yuri G. Zarhin 2015
Let $E$ be an elliptic curve without CM that is defined over a number field $K$. For all but finitely many nonarchimedean places $v$ of $K$ there is the reduction $E(v)$ of $E$ at $v$ that is an elliptic curve over the residue field $k(v)$ at $v$. The set of $v$s with ordinary $E(v)$ has density 1 (Serre). For such $v$ the endomorphism ring $End(E(v))$ of $E(v)$ is an order in an imaginary quadratic field. We prove that for any pair of relatively prime positive integers $N$ and $M$ there are infinitely many nonarchimedean places $v$ of $K$ such that the discriminant $Delta(v)$ of $End(E(v))$ is divisible by $N$ and the ratio $Delta(v)/N$ is relatively prime to $NM$. We also discuss similar questions for reductions of abelian varieties. The subject of this paper was inspired by an exercise in Serres Abelian $ell$-adic representations and elliptic curves and questions of Mihran Papikian and Alina Cojocaru.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا