Do you want to publish a course? Click here

A Bailey tree for integrals

64   0   0.0 ( 0 )
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

The notion of integral Bailey pairs is introduced. Using the single variable elliptic beta integral, we construct an infinite binary tree of identities for elliptic hypergeometric integrals. Two particular sequences of identities are explicitly described.



rate research

Read More

We propose a new method of estimating oscillatory integrals, which we call a stationary set method. We use it to obtain the sharp convergence exponents of Tarrys problems in dimension two for every degree $kge 2$. As a consequence, we obtain sharp Fourier extension estimates for a family of monomial surfaces.
We discuss the work of Birman and Solomyak on the singular numbers of integral operators from the point of view of modern approximation theory, in particular with the use of wavelet techniques. We are able to provide a simple proof of norm estimates for integral operators with kernel in $B^{frac{1}{p}-frac{1}{2}}_{p,p}(mathbb R,L_2(mathbb R))$. This recovers, extends and sheds new light on a theorem of Birman and Solomyak. We also use these techniques to provide a simple proof of Schur multiplier bounds for double operator integrals, with bounded symbol in $B^{frac{1}{p}-frac{1}{2}}_{frac{2p}{2-p},p}(mathbb R,L_infty(mathbb R))$, which extends Birman and Solomyaks result to symbols without compact domain.
151 - Shuichi Sato 2010
We consider singular integral operators and maximal singular integral operators with rough kernels on homogeneous groups. We prove certain estimates for the operators that imply $L^p$ boundedness of them by an extrapolation argument under a sharp condition for the kernels. Also, we prove some weighted $L^p$ inequalities for the operators.
88 - V.P. Spiridonov 2003
We define a general class of (multiple) integrals of hypergeometric type associated with the Jacobi theta functions. These integrals are related to theta hypergeometric series through the residue calculus. In the one variable case, we get theta function extensions of the Meijer function. A number of multiple generalizations of the elliptic beta integral [S2] associated with the root systems $A_n$ and $C_n$ is described. Some of the $C_n$-examples were proposed earlier by van Diejen and the author, but other integrals are new. An example of the biorthogonality relations associated with the elliptic beta integrals is considered in detail.
219 - Shuichi Sato 2008
We prove certain $L^p$ estimates ($1<p<infty$) for non-isotropic singular integrals along surfaces of revolution. As an application we obtain $L^p$ boundedness of the singular integrals under a sharp size condition on their kernels.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا