Do you want to publish a course? Click here

A moduli curve for compact conformally-Einstein Kahler manifolds

146   0   0.0 ( 0 )
 Added by Gideon Maschler
 Publication date 2003
  fields
and research's language is English
 Authors A. Derdzinski




Ask ChatGPT about the research

We classify quadruples $(M,g,m,tau)$ in which $(M,g)$ is a compact Kahler manifold of complex dimension $m>2$ with a nonconstant function $tau$ on $M$ such that the conformally related metric $g/tau^2$, defined wherever $tau e 0$, is Einstein. It turns out that $M$ then is the total space of a holomorphic $CP^1$ bundle over a compact Kahler-Einstein manifold $(N,h)$. The quadruples in question constitute four disjoint families: one, well-known, with Kahler metrics $g$ that are locally reducible; a second, discovered by Berard Bergery (1982), and having $tau e 0$ everywhere; a third one, related to the second by a form of analytic continuation, and analogous to some known Kahler surface metrics; and a fourth family, present only in odd complex dimensions $mge 9$. Our classification uses a {it moduli curve}, which is a subset $mathcal{C}$, depending on $m$, of an algebraic curve in $R^2$. A point $(u,v)$ in $mathcal{C}$ is naturally associated with any $(M,g,m,tau)$ having all of the above properties except for compactness of $M$, replaced by a weaker requirement of ``vertical compactness. One may in turn reconstruct $M,g$ and $tau$ from this $(u,v)$ coupled with some other data, among them a Kahler-Einstein base $(N,h)$ for the $CP^1$ bundle $M$. The points $(u,v)$ arising in this way from $(M,g,m,tau)$ with compact $M$ form a countably infinite subset of $mathcal{C}$.



rate research

Read More

75 - A. Derdzinski 2002
A special Kahler-Ricci potential on a Kahler manifold is any nonconstant $C^infty$ function $tau$ such that $J( ablatau)$ is a Killing vector field and, at every point with $dtau e 0$, all nonzero tangent vectors orthogonal to $ ablatau$ and $J( ablatau)$ are eigenvectors of both $ abla dtau$ and the Ricci tensor. For instance, this is always the case if $tau$ is a nonconstant $C^infty$ function on a Kahler manifold $(M,g)$ of complex dimension $m>2$ and the metric $tilde g=g/tau^2$, defined wherever $tau e 0$, is Einstein. (When such $tau$ exists, $(M,g)$ may be called {it almost-everywhere conformally Einstein}.) We provide a complete classification of compact Kahler manifolds with special Kahler-Ricci potentials and use it to prove a structure theorem for compact Kahler manifolds of any complex dimension $m>2$ which are almost-everywhere conformally Einstein.
In this paper, we establish a compactness result for a class of conformally compact Einstein metrics defined on manifolds of dimension $dge 4$. As an application, we derive the global uniqueness of a class of conformally compact Einstein metric defined on the $d$-dimensional ball constructed in the earlier work of Graham-Lee with $dge 4$. As a second application, we establish some gap phenomenon for a class of conformal invariants.
We show that locally conformally flat quasi-Einstein manifolds are globally conformally equivalent to a space form or locally isometric to a $pp$-wave or a warped product.
115 - A. Derdzinski 2002
The requirement that a (non-Einstein) Kahler metric in any given complex dimension $m>2$ be almost-everywhere conformally Einstein turns out to be much more restrictive, even locally, than in the case of complex surfaces. The local biholomorphic-isometry types of such metrics depend, for each $m>2$, on three real parameters along with an arbitrary Kahler-Einstein metric $h$ in complex dimension $m-1$. We provide an explicit description of all these local-isometry types, for any given $h$. That result is derived from a more general local classification theorem for metrics admitting functions we call {it special Kahler-Ricci potentials}.
In this note, we study the dynamics and associated zeta functions of conformally compact manifolds with variable negative sectional curvatures. We begin with a discussion of a larger class of manifolds known as convex co-compact manifolds with variable negative curvature. Applying results from dynamics on these spaces, we obtain optimal meromorphic extensions of weighted dynamical zeta functions and asymptotic counting estimates for the number of weighted closed geodesics. A meromorphic extension of the standard dynamical zeta function and the prime orbit theorem follow as corollaries. Finally, we investigate interactions between the dynamics and spectral theory of these spaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا