We investigate the existence of higher order ell^1-spreading models in subspaces of mixed Tsirelson spaces. For instance, we show that the following conditions are equivalent for the mixed Tsirelson space X=T[(theta _n,S_n)_{n=1}^{infty}] (1)Every block subspace of $X$ contains an ell^1-S_{omega}-spreading model, (2)The Bourgain ell^1-index I_b(Y) = I(Y) > omega^{omega} for any block subspace Y of X, (3)lim_mlimsup_ntheta_{m+n}/theta_n > 0 and every block subspace Y of X contains a block sequence equivalent to a subsequence of the unit vector basis of X. Moreover, if one (and hence all) of these conditions holds, then X is arbitrarily distortable.