Do you want to publish a course? Click here

Associativity and Operator Hamiltonian Quantization of Gauge Theories

76   0   0.0 ( 0 )
 Added by Alexei Semikhatov
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

We show that the associative algebra structure can be incorporated in the BRST quantization formalism for gauge theories such that extension from the corresponding Lie algebra to the associative algebra is achieved using operator quantization of reducible gauge theories. The BRST differential that encodes the associativity of the algebra multiplication is constructed as a second-order quadratic differential operator on the bar resolution.



rate research

Read More

In this work various symbol spaces with values in a sequentially complete locally convex vector space are introduced and discussed. They are used to define vector-valued oscillatory integrals which allow to extend Rieffels strict deformation quantization to the framework of sequentially complete locally convex algebras and modules with separately continuous products and module structures, making use of polynomially bounded actions of $mathbb{R}^n$. Several well-known integral formulas for star products are shown to fit into this general setting, and a new class of examples involving compactly supported $mathbb{R}^n$-actions on $mathbb{R}^n$ is constructed.
169 - Klaus Bering 2009
Fedosovs simple geometrical construction for deformation quantization of symplectic manifolds is generalized in three ways without introducing new variables: (1) The base manifold is allowed to be a supermanifold. (2) The star product does not have to be of Weyl/symmetric or Wick/normal type. (3) The initial geometric structures are allowed to depend on Plancks constant.
In this paper we introduce a notion of quantum Hamiltonian (co)action of Hopf algebras endowed with Drinfeld twist structure (resp., 2-cocycles). First, we define a classical Hamiltonian action in the setting of Poisson Lie groups compatible with the 2-cocycle stucture and we discuss a concrete example. This allows us to construct, out of the classical momentum map, a quantum momentum map in the setting of Hopf coactions and to quantize it by using Drinfeld approach.
466 - Bulat Suleimanov 2012
We construct a solution of an analog of the Schr{o}dinger equation for the Hamiltonian $ H_I (z, t, q_1, q_2, p_1, p_2) $ corresponding to the second equation $P_1^2$ in the Painleve I hierarchy. This solution is produced by an explicit change of variables from a solution of the linear equations whose compatibility condition is the ordinary differential equation $P_1^2$ with respect to $z$. This solution also satisfies an analog of the Schr{o}dinger equation corresponding to the Hamiltonian $ H_{II} (z, t, q_1, q_2, p_1, p_2) $ of Hamiltonian system with respect to $t$ which is compatible with $P_1^2$. A similar situation occurs for the $P_2^2$ equation in the Painleve II hierarchy.
We study quantized Coulomb branches of quiver gauge theories of Jordan type. We prove that the quantized Coulomb branch is isomorphic to the spherical graded Cherednik algebra in the unframed case, and is isomorphic to the spherical cyclotomic rational Cherednik algebra in the framed case. We also prove that the quantized Coulomb branch is a deformation of a subquotient of the Yangian of the affine $mathfrak{gl}(1)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا