Eigenvalues of majorized Hermitian matrices and Littlewood-Richardson coefficients


Abstract in English

Answering a question raised by S. Friedland, we show that the possible eigenvalues of Hermitian matrices (or compact operators) A, B, and C with C <= A + B are given by the same inequalities as in Klyachkos theorem for the case where C = A + B, except that the equality corresponding to tr(C) = tr(A) + tr(B) is replaced by the inequality corresponding to tr(C) <= tr(A) + tr(B). The possible types of finitely generated torsion modules A, B, and C over a discrete valuation ring such that there is an exact sequence B -> C -> A are characterized by the same inequalities.

Download