Do you want to publish a course? Click here

Mirror symmetry, Langlands duality, and the Hitchin system

127   0   0.0 ( 0 )
 Added by Michael Thaddeus
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

We study the moduli spaces of flat SL(r)- and PGL(r)-connections, or equivalently, Higgs bundles, on an algebraic curve. These spaces are noncompact Calabi-Yau orbifolds; we show that they can be regarded as mirror partners in two different senses. First, they satisfy the requirements laid down by Strominger-Yau-Zaslow (SYZ), in a suitably general sense involving a B-field or flat unitary gerbe. To show this, we use their hyperkahler structures and Hitchins integrable systems. Second, their Hodge numbers, again in a suitably general sense, are equal. These spaces provide significant evidence in support of SYZ. Moreover, they throw a bridge from mirror symmetry to the duality theory of Lie groups and, more broadly, to the geometric Langlands program.



rate research

Read More

131 - Michael Thaddeus 2000
By normalizing the space of commuting pairs of elements in a reductive Lie group G, and the corresponding space for the Langlands dual group, we construct pairs of hyperkahler orbifolds which satisfy the conditions to be mirror partners in the sense of Strominger-Yau-Zaslow. The same holds true for commuting quadruples in a compact Lie group. The Hodge numbers of the mirror partners, or more precisely their orbifold E-polynomials, are shown to agree, as predicted by mirror symmetry. These polynomials are explicitly calculated when G is a quotient of SL(n).
We prove that the Hilbert scheme of $k$ points on $mathbb{C}^2$ (Hilb$^k[mathbb{C}^2]$) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kahler and equivariant parameters as well as inverting the weight of the $mathbb{C}^times_hbar$-action. First, we find a two-parameter family $X_{k,l}$ of self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of Hilb$^k[mathbb{C}^2]$ is obtained via direct limit $ltoinfty$ and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted $hbar$-opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-$N$ sheaves on $mathbb{P}^2$ with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual.
A special case of the geometric Langlands correspondence is given by the relationship between solutions of the Bethe ansatz equations for the Gaudin model and opers - connections on the projective line with extra structure. In this paper, we describe a deformation of this correspondence for $SL(N)$. We introduce a difference equation version of opers called $q$-opers and prove a $q$-Langlands correspondence between nondegenerate solutions of the Bethe ansatz equations for the XXZ model and nondegenerate twisted $q$-opers with regular singularities on the projective line. We show that the quantum/classical duality between the XXZ spin chain and the trigonometric Ruijsenaars-Schneider model may be viewed as a special case of the $q$-Langlands correspondence. We also describe an application of $q$-opers to the equivariant quantum $K$-theory of the cotangent bundles to partial flag varieties.
We find an agreement of equivariant indices of semi-classical homomorphisms between pairwise mirror branes in the GL(2) Higgs moduli space on a Riemann surface. On one side we have the components of the Lagrangian brane of U(1,1) Higgs bundles whose mirror was proposed by Nigel Hitchin to be certain even exterior powers of the hyperholomorphic Dirac bundle on the SL(2) Higgs moduli space. The agreement arises from a mysterious functional equation. This gives strong computational evidence for Hitchins proposal.
134 - Tamas Hausel 2007
Here we survey questions and results on the Hodge theory of hyperkaehler quotients, motivated by certain S-duality considerations in string theory. The problems include L^2 harmonic forms, Betti numbers and mixed Hodge structures on the moduli spaces of Yang-Mills instantons on ALE gravitational instantons, magnetic monopoles on R^3 and Higgs bundles on a Riemann surface. Several of these spaces and their hyperkaehler metrics were constructed by Nigel Hitchin and his collaborators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا