No Arabic abstract
This note pursues the techniques of modified psi classes on the stack of stable maps (cf. [Graber-Kock-Pandharipande]) to give concise solutions to the characteristic number problem of rational curves in P^2 or P^1 x P^1 with a cusp or a prescribed triple contact. The classes of such loci are computed in terms of modified psi classes, diagonal classes, and certain codimension-2 boundary classes. Via topological recursions the generating functions for the numbers can then be expressed in terms of the usual characteristic number potentials.
We report on the problem of the existence of complex and real algebraic curves in the plane with prescribed singularities up to analytic and topological equivalence. The question is whether, for a given positive integer $d$ and a finite number of given analytic or topological singularity types, there exist a plane (irreducible) curve of degree $d$ having singular points of the given type as its only singularities. The set of all such curves is a quasi-projective variety, which we call an equisingular family (ESF). We describe, in terms of numerical invariants of the curves and their singularities, the state of the art concerning necessary and sufficient conditions for the non-emptiness and $T$-smoothness (i.e., smooth of expected dimension) of the corresponding ESF. The considered singularities can be arbitrary, but we spend special attention to plane curves with nodes and cusps, the most studied case, where still no complete answer is known in general. An important result is, however, that the necessary and the sufficient conditions show the same asymptotics for $T$-smooth equisingular families if the degree goes to infinity.
Let G be a finite group, and $g geq 2$. We study the locus of genus g curves that admit a G-action of given type, and inclusions between such loci. We use this to study the locus of genus g curves with prescribed automorphism group G. We completely classify these loci for g=3 (including equations for the corresponding curves), and for $g leq 10$ we classify those loci corresponding to large G.
For a split reductive group defined over a number field, we first introduce the notations of arithmetic torsors and arithmetic Higgs torsors. Then we construct arithmetic characteristic curves associated to arithmetic Higgs torsors, based on the Chevalley characteristic morphism and the existence of Chevalley basis for the associated Lie algebra. As to be expected, this work is motivated by the works of Beauville-Narasimhan on spectral curves and Donagi-Gaistgory on cameral curves in algebraic geometry. In the forthcoming papers, we will use arithmetic characteristic curves to construct arithmetic Hitchin fibrations and study the intersection homologies and perverse sheaves for the associated structures, following Ngos approach to the fundamental lemma.
We provide a lower bound on the degree of curves of the projective plane $mathbb{P}^2$ passing through the centers of a divisorial valuation $ u$ of $mathbb{P}^2$ with prescribed multiplicities, and an upper bound for the Seshadri-type constant of $ u$, $hat{mu}( u)$, constant that is crucial in the Nagata-type valuative conjecture. We also give some results related to the bounded negativity conjecture concerning those rational surfaces having the projective plane as a relatively minimal model.
We enumerate rational curves in toric surfaces passing through points and satisfying cross-ratio constraints using tropical and combinatorial methods. Our starting point is arXiv:1509.07453, where a tropical-algebraic correspondence theorem was proved that relates counts of rational curves in toric varieties that satisfy point conditions and cross-ratio constraints to the analogous tropical counts. We proceed in two steps: based on tropical intersection theory we first study tropical cross-ratios and introduce degenerated cross-ratios. Second we provide a lattice path algorithm that produces all tropical curves satisfying such degenerated conditions explicitly. In a special case simpler combinatorial objects, so-called cross-ratio floor diagrams, are introduced which can be used to determine these enumerative numbers as well.